4-(7-Bromobenzo[d][1,2,3]thiadiazol-4-yl)morpholine
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
Synthesis of 4-(7-bromobenzo[d][1,2,3]thiadiazol-4-yl)morpholine 2
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carella, A.; Borbone, F.; Centore, R. Research Progress on Photosensitizers for DSSC. Front. Chem. 2018, 6, 481. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-P.; Chun-Ting Li, C.-T.; Ho, K.-C. Use of organic materials in dye-sensitized solar cells. Mater. Today 2017, 20, 267–283. [Google Scholar] [CrossRef]
- Knyazeva, E.A.; Rakitin, O.A. Influence of structural factors on the photovoltaic properties of dye-sensitized solar cells. Russ. Chem. Rev. 2016, 85, 1146–1183. [Google Scholar] [CrossRef]
- Konstantinova, L.S.; Knyazeva, E.A.; Rakitin, O.A. Recent Developments in the Synthesis and Applications of 1,2,5-Thia- and Selenadiazoles. A Review. Org. Prep. Proc. Int. 2014, 46, 475–544. [Google Scholar] [CrossRef]
- Rakitin, O.A.; Zibarev, A.V. Recent Progress in Synthesis and Applications of 5-Membered Chalcogen-Nitrogen π-Heterocycles with Three Heteroatoms. Asian J. Org. Chem. 2018, 7, 2397–2416. [Google Scholar] [CrossRef]
- Rakitin, O.A. Fused 1,2,5-thia- and 1,2,5-selenadiazoles: Synthesis and application in materials chemistry. Tetrahedron Lett. 2020, 61, 152230. [Google Scholar] [CrossRef]
- Rakitin, O.A. Recent developments in the synthesis of 1,2,5-thiadiazoles and 2,1,3-benzothiadiazoles. Synthesis 2019, 51, 4338–4347. [Google Scholar] [CrossRef]
- Jordis, U.; Rudolf, M. Conversion of cyclic trithiocarbonates to thioacetals, including 1,3-dithiane, by reduction with diisobutylaluminium hydride (dibal). Phosphorus Sulfur Relat. Elem. 1984, 19, 279–283. [Google Scholar] [CrossRef]
- Chen, Z.; Brown, J.; Drees, M.; Seger, M.; Hu, Y.; Xia, Y.; Boudinet, D.; McCray, M.; Delferro, M.; Marks, T.J.; et al. Benzo[d][1,2,3]thiadiazole (isoBT): Synthesis, Structural Analysis, and Implementation in Semiconducting Polymers. Chem. Mater. 2016, 28, 6390–6400. [Google Scholar] [CrossRef]
- Chen, S.; Li, Y.; Yang, W.; Chen, N.; Liu, H.; Li, Y. Synthesis and Tuning Optical Nonlinear Properties of Molecular Crystals of Benzothiadiazole. J. Phys. Chem. C 2010, 114, 15109–15115. [Google Scholar] [CrossRef]
- Bolisetty, M.N.K.P.; Li, C.-T.; Thomas, K.R.J.; Bodedla, G.B.; Ho, K.-C. Benzothiadiazole-based organic dyes with pyridine anchors for dye-sensitized solar cells: Effect of donor on optical properties. Tetrahedron 2015, 71, 4203–4212. [Google Scholar] [CrossRef]
Entry | Excess of Morphline | Solvent | Base (eqiv.) | Yield 2, % |
---|---|---|---|---|
1 | - a | - | 35 | |
2 | 2 | DMF b | - | 53 |
3 | 2 | MeCN a | - | 28 |
4 | 2 | DMSO b | - | 70 |
5 | 1.5 | DMSO b | Et3N (1.1) | 83 |
6 | 1.5 | DMSO b | DABCO (1.1) | 63 |
7 | 1.5 | DMSO b | DBU (1.1) | 55 |
Empirical Formula | C10H10BrN3OS |
---|---|
Formula weight | 300.18 |
Temperature | 100(2) K |
Wavelength | 0.71073 Å |
Crystal system | Orthorhombic |
Space group | Pna21 |
Unit cell dimensions | a = 16.1571(3) Å b = 4.03990(10) Å c = 16.8719(3) Å |
Volume | 1101.28(4) Å3 |
Z | 4 |
Density (calculated) | 1.810 g/cm3 |
Absorption coefficient | 3.903 mm−1 |
F(000) | 600 |
Crystal size | 0.400 × 0.100 × 0.100 mm3 |
Theta range for data collection | 2.41 to 33.81°. |
Index ranges | −25<= h<=25, −6<=k<=6, −26<=l<=26 |
Reflections collected | 29,723 |
Independent reflections | 4615 [R(int) = 0.0466] |
Completeness to theta = 33.81 ° | 99.7% |
Absorption correction | Multi-scan |
Max. and min. transmission | (not specified) |
Refinement method | Full-matrix least-squares on F2 |
Data/restraints/parameters | 4615/1/146 |
Goodness-of-fit on F2 | 1.020 |
Final R indices [I>2sigma(I)] | R1 = 0.0288, wR2 = 0.0510 |
R indices (all data) | R1 = 0.0462, wR2 = 0.0569 |
Absolute structure parameter | 0.009(10) |
Largest diff. peak and hole | 0.540 and −0.673 e.Å−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gudim, N.S.; Knyazeva, E.A.; Obruchnikova, N.V.; Rakitin, O.A.; Popov, V.V. 4-(7-Bromobenzo[d][1,2,3]thiadiazol-4-yl)morpholine. Molbank 2021, 2021, M1202. https://doi.org/10.3390/M1202
Gudim NS, Knyazeva EA, Obruchnikova NV, Rakitin OA, Popov VV. 4-(7-Bromobenzo[d][1,2,3]thiadiazol-4-yl)morpholine. Molbank. 2021; 2021(2):M1202. https://doi.org/10.3390/M1202
Chicago/Turabian StyleGudim, Nikita S., Ekaterina A. Knyazeva, Natalia V. Obruchnikova, Oleg A. Rakitin, and Vadim V. Popov. 2021. "4-(7-Bromobenzo[d][1,2,3]thiadiazol-4-yl)morpholine" Molbank 2021, no. 2: M1202. https://doi.org/10.3390/M1202
APA StyleGudim, N. S., Knyazeva, E. A., Obruchnikova, N. V., Rakitin, O. A., & Popov, V. V. (2021). 4-(7-Bromobenzo[d][1,2,3]thiadiazol-4-yl)morpholine. Molbank, 2021(2), M1202. https://doi.org/10.3390/M1202