Quercetin Hybrids—Synthesis, Spectral Characterization and Radical Scavenging Potential
Abstract
:1. Introduction
2. Results and Discussion
In Vitro DPPH and ABTS Radical Scavenging Assay
3. Materials and Methods
3.1. Synthetic Procedures
3.1.1. Synthesis of Quercetin Hybrids (6a, 6b), General Procedure
3.1.2. Synthesis of Quercetin Hybrids (7a, 8a, 8b), General Procedure
3.2. Radical Scavenging Activities
3.2.1. DPPH Free Radical Scavenging Assay
3.2.2. ABTS Free Radical Scavenging Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapas, A.R.; Sakarkar, D.M.; Kakde, R.B. Flavonoids as Nutraceuticals: A Review. Trop. J. Pharm. Res. 2008, 7, 1089–1099. [Google Scholar] [CrossRef]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Tian, C.; Liu, X.; Chang, Y.; Wang, R.; Lv, T.; Cui, C.; Liu, M. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. S. Afr. J. Bot. 2021, 137, 257–264. [Google Scholar] [CrossRef]
- Tomečková, V.; Reháková, M.; Mojžišová, G.; Magura, J.; Wadsten, T.; Zelenáková, K. Modified natural clinoptilolite with quercetin and quercetin dihydrate and the study of their anticancer activity. Microporous Mesoporous Mater. 2012, 147, 59–67. [Google Scholar] [CrossRef]
- Mateus, P.G.; Wolf, V.G.; Borges, M.S.; Ximenes, V.F. Quercetin: Prooxidant Effect and Apoptosis in Cancer. Stud. Nat. Prod. Chem. 2018, 58, 265–285. [Google Scholar] [CrossRef]
- Çelik, H.; Koşar, M. Inhibitory effects of dietary flavonoids on purified hepatic NADH-cytochrome b5 reductase: Structure-activity relationships. Chem. Biol. Interact. 2012, 197, 103–109. [Google Scholar] [CrossRef]
- Hur, W.; Gray, N.S. Small molecule modulators of antioxidant response pathway. Curr. Opin. Chem. Biol. 2011, 15, 162–173. [Google Scholar] [CrossRef]
- Carrasco-Pozo, C.; Mizgier, M.L.; Speisky, H.; Gotteland, M. Differential protective effects of quercetin, resveratrol, rutin and epigallocatechin gallate against mitochondrial dysfunction induced by indomethacin in Caco-2 cells. Chem. Biol. Interact. 2012, 195, 199–205. [Google Scholar] [CrossRef]
- Fernández, M. Effect of lipophilization on the antioxidant activity of carvacrol, quercetin and vanillin with conjugated linoleic acid. Rev. Mex. Ing. Química 2019, 18, 637–645. [Google Scholar] [CrossRef]
- Antonio, A.S.; Wiedemann, L.S.M.; Veiga-Junior, V.F. Natural products’ role against COVID-19. RSC Adv. 2020, 10, 23379–23393. [Google Scholar] [CrossRef]
- Diniz, L.R.L.; Souza, M.T.S.; Diarte, A.B.S.; Sousa, D.P. Mechanistic Aspects and Therapeutic Potential of Quercetin against COVID-19-Associated Acute Kidney Injury. Molecules 2020, 25, 5772. [Google Scholar] [CrossRef] [PubMed]
- Pierro, F.D.; Iqtadar, S.; Khan, A.; Mumtaz, S.U.; Chaudhry, M.M.; Bertuccioli, A.; Derosa, G.; Maffioli, P.; Togni, S.; Riva, A.; et al. Potential clinical benefits of quercetin in the early stage of COVID-19: Results of a second, pilot, randomized, controlled and open-label clinical trial. Int. J. Gen. Med. 2021, 14, 2807–2816. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kumar, C.N.; Kim, H.J.; Kim, D.H.; Cho, J.; Jin, C.; Lee, Y.S. Glucose-containing flavones-their synthesis and antioxidant and neuroprotective activities. Bioorg. Med. Chem. Lett. 2009, 19, 6009–6013. [Google Scholar] [CrossRef] [PubMed]
- Gansukh, E.; Nile, A.; Kim, D.H.; Oh, J.W.; Nile, S.H. New insights into antiviral and cytotoxic potential of quercetin and its derivatives—A biochemical perspective. Food Chem. 2021, 334, 127508. [Google Scholar] [CrossRef] [PubMed]
- Mazzotta, S.; Carullo, G.; Sciubba, F.; Di Cocco, M.E.; Aiello, F. 7-Docosahexaenoyl-Quercetin. Molbank 2021, 2021, M1203. [Google Scholar] [CrossRef]
- Kukhareva, T.S.; Krasnova, V.A.; Koroteev, M.P.; Kaziev, G.Z.; Kuleshova, L.N.; Korlyukov, A.A.; Antipin, M.Y.; Nifant’ev, E.E. Electrophilic substitution in the dihydroquercitin system. Aminomethylation. Russ. J. Org. Chem. 2004, 40, 1190–1193. [Google Scholar] [CrossRef]
- Zask, A.; Nakanishi, K.; Ellestad, G.; Sparrow, J.R. Antioxidant Flavonoid Derivatives. Patent WO2014110551A1. Available online: https://patents.google.com/patent/WO2014110551A1 (accessed on 17 July 2014).
- Hoang, T.K.D.; Huynh, T.K.C.; Do, T.H.T.; Nguyen, T.D. Mannich aminomethylation of flavonoids and anti-proliferative activity against breast cancer cell. Chem. Pap. 2018, 72, 1399–1406. [Google Scholar] [CrossRef]
- Ilkei, V.; Spaits, A.; Prechl, A.; Müller, J.; Konczol, A.; Levai, S.; Riethmüller, E.; Szigetvari, A.; Beni, Z.; Dekany, M.; et al. C8-selective biomimetic transformation of 5,7-dihydroxylated flavonoids by an acid-catalysed phenolic Mannich reaction: Synthesis of flavonoid alkaloids with quercetin and (–)-epicatechin skeletons. Tetrahedron 2017, 73, 1503–1510. [Google Scholar] [CrossRef]
- Dhadda, S.; Raigar, A.K.; Saini, K.; Manju; Guleria, A. Benzothiazoles: From recent advances in green synthesis to anti-cancer potential. Sustain. Chem. Pharm. 2021, 24, 100521. [Google Scholar] [CrossRef]
- Keri, R.S.; Patil, M.R.; Patil, S.A.; Budagupi, S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem. 2015, 89, 207–251. [Google Scholar] [CrossRef] [PubMed]
- Pathare, B.; Bansode, T. Review- biological active benzimidazole derivatives. Results Chem. 2021, 3, 100200. [Google Scholar] [CrossRef]
- Gümüş, M.; Yakan, M.; Koca, I. Recent advances of thiazole hybrids in biological applications. Future Med. Chem. 2019, 11, 1979–1998. [Google Scholar] [CrossRef]
- El-Meguid, E.A.A.; Moustafa, G.O.; Awad, H.M.; Zaki, E.R.; Nossier, E.S. Novel benzothiazole hybrids targeting EGFR: Design, synthesis, biological evaluation and molecular docking studies. J. Mol. Struct. 2021, 1240, 130595. [Google Scholar] [CrossRef]
- Stremski, Y.; Statkova-Abeghe, S. (E)-2-(2-oxo-4-phenylbut-3-en-1-yl)benzo[d]thiazole- 3(2H)-carboxylates. Molbank 2021, 2021, M1236. [Google Scholar] [CrossRef]
- Stremski, Y.; Ahmedova, A.; Dołęga, A.; Statkova-Abeghe, S.; Kirkova, D. Oxidation step in the preparation of benzocamalexin: The crystallographic evidence. Mendeleev Commun. 2021, 31, 824–826. [Google Scholar] [CrossRef]
- Stremski, Y.; Kirkova, D.; Statkova-Abeghe, S.; Angelov, P.; Ivanov, I.; Georgiev, D. Synthesis and antibacterial activity of hydroxylated 2-arylbenzothiazole derivatives. Synth. Commun. 2020, 50, 3007–3015. [Google Scholar] [CrossRef]
- Kyriakou, E.; Primikyri, A.; Charisiadis, P.; Katsoura, M.; Gerothanassis, I.P.; Stamatis, H.; Tzakos, A.G. Unexpected enzyme-catalyzed regioselective acylation of flavonoid aglycones and rapid product screening. Org. Biomol. Chem. 2012, 10, 1739–1742. [Google Scholar] [CrossRef]
- Docheva, M.; Dagnon, S.; Statkova-Abeghe, S. Flavonoid content and radical scavenging potential of extracts prepared from tobacco cultivars and waste. Nat. Prod. Res. 2014, 28, 1328–1334. [Google Scholar] [CrossRef]
- Kirkova, D.; Statkova-Abeghe, S.; Docheva, M.; Stremski, Y.; Minkova, S. Structure-Activity Relationship of in Vitro Radical-Scavenging Activity of 2-(Hydroxyphenyl) Benzothiazole Derivatives. Bulg. Chem. Commun. 2020, 52, 196–200. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
Product | X | R | R1 | Ratio * | T, °C | Time, h | Yield, % |
---|---|---|---|---|---|---|---|
6a | S | H | Et | 3:1 | 80 | 5 | 45 |
6b | S | H | Me | 3:1 | 60 | 5 | 37 |
7a | NH | H | Et | 2:1 | 60 | 3 | 59 ** |
8a | NH | Me | Et | 2:1 | 80 | 24 | 61 ** |
8b | NH | Me | Me | 3:1 | 80 | 1.5 | 51 ** |
Compound | MWg /mol | DPPH IC50, μM | ABTS IC50, μM |
---|---|---|---|
Quercetin | 302.24 | 4.60 ± 0.3 | 48.0 ± 4.4 |
Rutin | 610.52 | 5.02 ± 0.4 | 95.3 ± 4.5 |
6a | 509.49 | 6.95 ± 0.3 | 49.8 ± 3.5 |
6b | 495.46 | 6.83 ± 0.3 | 50.0 ± 3.5 |
7a | 564.50 | 6.18 ± 0.3 | 58.3 ± 3.5 |
8a | 592.56 | 7.26 ± 0.3 | 62.4 ± 3.5 |
8b | 564.50 | 6.17 ± 0.3 | 55.1 ± 3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirkova, D.; Stremski, Y.; Statkova-Abeghe, S.; Docheva, M. Quercetin Hybrids—Synthesis, Spectral Characterization and Radical Scavenging Potential. Molbank 2022, 2022, M1329. https://doi.org/10.3390/M1329
Kirkova D, Stremski Y, Statkova-Abeghe S, Docheva M. Quercetin Hybrids—Synthesis, Spectral Characterization and Radical Scavenging Potential. Molbank. 2022; 2022(1):M1329. https://doi.org/10.3390/M1329
Chicago/Turabian StyleKirkova, Desislava, Yordan Stremski, Stela Statkova-Abeghe, and Margarita Docheva. 2022. "Quercetin Hybrids—Synthesis, Spectral Characterization and Radical Scavenging Potential" Molbank 2022, no. 1: M1329. https://doi.org/10.3390/M1329
APA StyleKirkova, D., Stremski, Y., Statkova-Abeghe, S., & Docheva, M. (2022). Quercetin Hybrids—Synthesis, Spectral Characterization and Radical Scavenging Potential. Molbank, 2022(1), M1329. https://doi.org/10.3390/M1329