Diethyl(benzamido(diisopropoxyphosphoryl)methyl) phosphonate
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. General Experimental Information
3.2. Experimental Procedures and Characterization Data for Aminobisphosphonate 3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krečmerová, M.; Majer, P.; Rais, R.; Slusher, B.S. Phosphonates and Phosphonate Prodrugs in Medicinal Chemistry: Past Successes and Future Prospects. Front. Chem. 2022, 10, 889737. [Google Scholar] [CrossRef]
- Kudzin, Z.H.; Kudzin, M.H.; Drabowicz, J.; Stevens, C.V. Aminophosphonic Acids—Phosphorus Analogues of Natural Amino Acids.Part 1: Syntheses of α-Aminophosphonic Acids. Curr. Org. Chem. 2012, 15, 2015–2071. [Google Scholar] [CrossRef]
- Orsini, F.; Sello, G.; Sisti, M. Aminophosphonic Acids and Derivatives. Synthesis and Biological Applications. Curr. Med. Chem. 2009, 17, 264–289. [Google Scholar] [CrossRef]
- Barbosa, J.S.; Braga, S.S.; Almeida Paz, F.A. Empowering the Medicinal Applications of Bisphosphonates by Unveiling Their Synthesis Details. Molecules 2020, 25, 2821. [Google Scholar] [CrossRef]
- Kaboudin, B.; Daliri, P.; Faghih, S.; Esfandiari, H. Hydroxy- and Amino-Phosphonates and -Bisphosphonates: Synthetic Methods and Their Biological Applications. Front. Chem. 2022, 10, 890696. [Google Scholar] [CrossRef]
- Chmielewska, E.; Kafarski, P. Synthetic Procedures Leading towards Aminobisphosphonates. Molecules 2016, 21, 1474. [Google Scholar] [CrossRef]
- Maestro, A.; del Corte, X.; López-Francés, A.; Martinez De Marigorta, E.; Palacios, F.; Vicario, J. Asymmetric Synthesis of Tetrasubstituted α-Aminophosphonic Acid Derivatives. Molecules 2021, 26, 3202. [Google Scholar] [CrossRef]
- Dussart, J.; Deschamp, J.; Migianu-Griffoni, E.; Lecouvey, M. From Industrial Method to the Use of Silylated P(III) Reagents for the Synthesis of Relevant Phosphonylated Molecules. Org. Process Res. Dev. 2020, 24, 637–651. [Google Scholar] [CrossRef]
- Skarpos, H.; Osipov, S.N.; Vorob’Eva, D.V.; Odinets, I.L.; Lork, E.; Röschenthaler, G.V. Synthesis of Functionalized Bisphosphonates via Click Chemistry. Org. Biomol. Chem. 2007, 5, 2361–2367. [Google Scholar] [CrossRef]
- Bortolamiol, E.; Chiminazzo, A.; Sperni, L.; Borsato, G.; Fabris, F.; Scarso, A. Functional Bisphosphonate Synthesis for the Development of New Anti-Resorption Bone Drug Candidates. New J. Chem. 2019, 43, 12641–12649. [Google Scholar] [CrossRef]
- Leung, C.Y.; Langille, A.M.; Mancuso, J.; Tsantrizos, Y.S. Discovery of Thienopyrimidine-Based Inhibitors of the Human Farnesyl Pyrophosphate Synthase—Parallel Synthesis of Analogs via a Trimethylsilyl Ylidene Intermediate. Bioorg. Med. Chem. 2013, 21, 2229–2240. [Google Scholar] [CrossRef]
- Lacbay, C.M.; Mancuso, J.; Lin, Y.S.; Bennett, N.; Götte, M.; Tsantrizos, Y.S. Modular Assembly of Purine-like Bisphosphonates as Inhibitors of HIV-1 Reverse Transcriptase. J. Med. Chem. 2014, 57, 7435–7449. [Google Scholar] [CrossRef]
- Lee, H.F.; Lacbay, C.M.; Boutin, R.; Matralis, A.N.; Park, J.; Waller, D.D.; Guan, T.L.; Sebag, M.; Tsantrizos, Y.S. Synthesis and Evaluation of Structurally Diverse C-2-Substituted Thienopyrimidine-Based Inhibitors of the Human Geranylgeranyl Pyrophosphate Synthase. J. Med. Chem. 2022, 65, 2471–2496. [Google Scholar] [CrossRef]
- Shaddy, A.A.; Kamel, A.A.; Abdou, W.M. Synthesis, Quantitative Structure-Activity Relationship, and Anti-Inflammatory Profiles of Substituted 5-and 6-N-Heterocycle Bisphosphonate Esters. Synth. Commun. 2013, 43, 236–252. [Google Scholar] [CrossRef]
- Monteil, M.; Migianu-Griffoni, E.; Sainte-Catherine, O.; Di Benedetto, M.; Lecouvey, M. Bisphosphonate Prodrugs: Synthesis and Biological Evaluation in HuH7 Hepatocarcinoma Cells. Eur. J. Med. Chem. 2014, 77, 56–64. [Google Scholar] [CrossRef]
- Stresing, V.; Daubiné, F.; Benzaid, I.; Mönkkönen, H.; Clézardin, P. Bisphosphonates in Cancer Therapy. Cancer Lett. 2007, 257, 16–35. [Google Scholar] [CrossRef]
- Coleman, R. The Use of Bisphosphonates in Cancer Treatment. Ann. N. Y. Acad. Sci. 2011, 1218, 3–14. [Google Scholar] [CrossRef]
- WHO World Health Organization. World Health Organization Model List of Essential Medicines: 21st List (2019). 2019. Available online: https://apps.who.int/iris/handle/10665/325771 (accessed on 19 July 2022).
- WHO World Health Organization. World Health Organization Model List of Essential Medicines: 22nd List (2021). 2021. Available online: http://apps.who.int/iris/handle/10665/345533 (accessed on 19 July 2022).
- Maestro, A.; de Marigorta, E.M.; Palacios, F.; Vicario, J. α-Iminophosphonates: Useful Intermediates for Enantioselective Synthesis of α-Aminophosphonates. Asian J. Org. Chem. 2020, 9, 538–548. [Google Scholar] [CrossRef]
- Turcheniuk, K.V.; Kukhar, V.P.; Röschenthaler, G.V.; Aceña, J.L.; Soloshonok, V.A.; Sorochinsky, A.E. Recent Advances in the Synthesis of Fluorinated Aminophosphonates and Aminophosphonic Acids. RSC Adv. 2013, 3, 6693–6716. [Google Scholar] [CrossRef]
- Vicario, J.; Ezpeleta, M.; Palacios, F. Asymmetric Cyanation of α-Ketiminophosphonates Catalyzed by Cinchona Alkaloids: Enantioselective Synthesis of Tetrasubstituted α-Aminophosphonic Acid Derivatives from Trisubstituted α-Aminophosphonates. Adv. Synth. Catal. 2012, 354, 2641–2647. [Google Scholar] [CrossRef]
- Yan, Z.; Wu, B.; Gao, X.; Chen, M.W.; Zhou, Y.G. Enantioselective Synthesis of α-Amino Phosphonates via Pd-Catalyzed Asymmetric Hydrogenation. Org. Lett. 2016, 18, 692–695. [Google Scholar] [CrossRef]
- Inokuma, T.; Sakakibara, T.; Someno, T.; Masui, K.; Shigenaga, A.; Otaka, A.; Yamada, K.I. Asymmetric Synthesis of α-Amino Phosphonic Acids Using Stable Imino Phosphonate as a Universal Precursor. Chem. Eur. J. 2019, 25, 13829–13832. [Google Scholar] [CrossRef]
- Vicario, J.; Ortiz, P.; Palacios, F. Synthesis of Tetrasubstituted α-Aminophosphonic Acid Derivatives from Trisubstituted α-Aminophosphonates. Eur. J. Org. Chem. 2013, 2013, 7095–7100. [Google Scholar] [CrossRef]
- Vicario, J.; Ortiz, P.; Ezpeleta, J.M.; Palacios, F. Asymmetric Synthesis of Functionalized Tetrasubstituted α-Aminophosphonates through Enantioselective Aza-Henry Reaction of Phosphorylated Ketimines. J. Org. Chem. 2015, 80, 156–164. [Google Scholar] [CrossRef]
- Maestro, A.; Martinez De Marigorta, E.; Palacios, F.; Vicario, J. Enantioselective Aza-Reformatsky Reaction with Ketimines. Org. Lett. 2019, 21, 9473–9477. [Google Scholar] [CrossRef]
- Maestro, A.; De Marigorta, E.M.; Palacios, F.; Vicario, J. Enantioselective α-Aminophosphonate Functionalization of Indole Ring through an Organocatalyzed Friedel-Crafts Reaction. J. Org. Chem. 2019, 84, 1094–1102. [Google Scholar] [CrossRef]
- López-Francés, A.; del Corte, X.; Martinez De Marigorta, E.; Palacios, F.; Vicario, J. Ugi Reaction on α-Phosphorated Ketimines for the Synthesis of Tetrasubstituted α-Aminophosphonates and Their Applications as Antiproliferative Agents. Molecules 2021, 26, 1654. [Google Scholar] [CrossRef]
- Maestro, A.; del Corte, X.; Martinez de Marigorta, E.; Palacios, F.; Vicario, J. Enantioselective Synthesis of Functionalized α-Aminophosphonic Acid Derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2019, 194, 287–291. [Google Scholar] [CrossRef]
- Schrader, T.; Kober, R.; Steglich, W. Synthese von 1-Aminophosphonsäure-Derivaten Über Acyliminophosphonsäure-Ester. Synthesis 1986, 5, 372–375. [Google Scholar] [CrossRef]
- Kobayashi, S.; Kiyohara, H.; Nakamura, Y.; Matsubara, R. Catalytic Asymmetric Synthesis of α-Amino Phosphonates Using Enantioselective Carbon-Carbon Bond-Forming Reactions. J. Am. Chem. Soc. 2004, 126, 6558–6559. [Google Scholar] [CrossRef]
- Kiyohara, H.; Nakamura, Y.; Matsubara, R.; Kobayashi, S. Enantiomerically Enriched Allylglycine Derivatives through the Catalytic Asymmetric Allylation of Iminoesters and Iminophosphonates with Allylsilanes. Angew. Chem. Int. Ed. 2006, 45, 1615–1617. [Google Scholar] [CrossRef]
- Kiyohara, H.; Matsubara, R.; Kobayashi, S. High Turnover Frequency Observed in Catalytic Enantioselective Additions of Enecarbamates and Enamides to Iminophosphonates. Org. Lett. 2006, 8, 5333–5335. [Google Scholar] [CrossRef]
- Del Corte, X.; Maestro, A.; Vicario, J.; Martinez De Marigorta, E.; Palacios, F. Brönsted-Acid-Catalyzed Asymmetric Three-Component Reaction of Amines, Aldehydes, and Pyruvate Derivatives. Enantioselective Synthesis of Highly Functionalized γ-Lactam Derivatives. Org. Lett. 2018, 20, 317–320. [Google Scholar] [CrossRef]
- del Corte, X.; López-Francés, A.; Maestro, A.; Martinez de Marigorta, E.; Palacios, F.; Vicario, J. Brönsted Acid Catalyzed Multicomponent Synthesis of Phosphorus and Fluorine-Derived γ-Lactam Derivatives. J. Org. Chem. 2020, 85, 14369–14383. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Francés, A.; Palacios, F.; Maestro, A.; Vicario, J. Diethyl(benzamido(diisopropoxyphosphoryl)methyl) phosphonate. Molbank 2022, 2022, M1424. https://doi.org/10.3390/M1424
López-Francés A, Palacios F, Maestro A, Vicario J. Diethyl(benzamido(diisopropoxyphosphoryl)methyl) phosphonate. Molbank. 2022; 2022(3):M1424. https://doi.org/10.3390/M1424
Chicago/Turabian StyleLópez-Francés, Adrián, Francisco Palacios, Aitor Maestro, and Javier Vicario. 2022. "Diethyl(benzamido(diisopropoxyphosphoryl)methyl) phosphonate" Molbank 2022, no. 3: M1424. https://doi.org/10.3390/M1424
APA StyleLópez-Francés, A., Palacios, F., Maestro, A., & Vicario, J. (2022). Diethyl(benzamido(diisopropoxyphosphoryl)methyl) phosphonate. Molbank, 2022(3), M1424. https://doi.org/10.3390/M1424