N′1,N′4-bis(2-(7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl)ethylidene)succinohydrazide
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, E.; Edwards, A.M. (Eds.) Flavins: Photochemistry and Photobilogy; RSC Publishing: Cambridge, UK, 2006. [Google Scholar]
- Ravanat, J.-L.; Saint-Pierre, C.; Cadet, J. One-electron oxidation of the guanine moiety of 2′-deoxyguanosine: Influence of 8-oxo-7,8-dihydro-2′-deoxyguanosine. J. Am. Chem. Soc. 2003, 125, 2030–2031. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, M.; Kino, K.; Oyoshi, T.; Suzuki, M.; Kobayashi, T.; Miyazawa, H. Product analysis of photooxidation in isolated quadruplex DNA; 8-oxo-7,8-dihydroguanine and its oxidation product at 3′-G are formed instead of 2,5-diamino-4 H-imidazol-4-one. RSC Adv. 2013, 3, 25694–25697. [Google Scholar] [CrossRef]
- Ikeda, H.; Saito, I. 8-Methoxydeoxyguanosine as an effective precursor of 2-aminoimidazolone, a major guanine oxidation product in one-electron oxidation of DNA. J. Am. Chem. Soc. 1999, 121, 10836–10837. [Google Scholar] [CrossRef]
- Ming, X.; Matter, B.; Song, M.; Veliath, E.; Shanley, R.; Jones, R.; Tretyakova, N. Mapping structurally defined guanine oxidation products along DNA duplexes: Influence of local sequence context and endogenous cytosine methylation. J. Am. Chem. Soc. 2014, 136, 4223–4235. [Google Scholar] [CrossRef]
- Luo, W.; Muller, J.G.; Burrows, C.J. The pH-dependent role of superoxide in riboflavin-catalyzed photooxidation of 8-oxo-7,8-dihydroguanosine. Org. Lett. 2001, 3, 2801–2804. [Google Scholar] [CrossRef] [PubMed]
- Neeley, W.L.; Delaney, J.C.; Henderson, P.T.; Essigmann, J.M. In vivo bypass efficiencies and mutational signatures of the guanine oxidation products 2-aminoimidazolone and 5-guanidino-4-nitroimidazole. J. Biol. Chem. 2004, 279, 43568–43573. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Kino, K.; Kawada, T.; Morikawa, M.; Kobayashi, T.; Miyazawa, H. Analysis of nucleotide insertion opposite 2,2,4-triamino-5(2H)-oxazolone by eukaryotic B- and Y-Family DNA polymerases. Chem. Res. Toxicol. 2015, 28, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Stathis, D.; Lischke, U.; Koch, S.C.; Deiml, C.A.; Carell, T. Discovery and mutagenicity of a guanidinoformimine lesion as a new intermediate of the oxidative deoxyguanosine degradation pathway. J. Am. Chem. Soc. 2012, 134, 4925–4930. [Google Scholar] [CrossRef]
- Fall, H.H.; Petering, H.G. Metabolite Inhibitors. I. 6,7-Dimethyl-9-formylmethylisoalloxazine, 6,7-dimethyl-9-(2′-hydroxyethyl)-isoalloxazine and derivatives. J. Am. Chem. Soc. 1956, 78, 377–380. [Google Scholar] [CrossRef]
- Sanjust, E.; Cocco, D.; Curreli, N.; Rescigno, A.; Sollai, F.; Bannister, J.V. Flavin-grafted poly(vinyl alcohol): Preparation and properties. J. Appl. Polym. Sci. 2002, 85, 2471–2477. [Google Scholar] [CrossRef]
- Singh, R.; Geetanjali; Chauhan, S.M.S. Electron transfer in natural and unnatural flavoporphyrins. Bioorg. Chem. 2004, 32, 140–169. [Google Scholar] [CrossRef] [PubMed]
- Kino, K.; Miyazawa, H.; Sugiyama, H. User-friendly synthesis and photoirradiation of a flavin-linked oligomer. Genes Environ. 2007, 29, 23–28. [Google Scholar] [CrossRef]
- Svoboda, J.; König, B.; Sadeghian, K.; Schützb, M. 2′-Oxoethyl flavin revisited. Z. Für Nat. B. 2008, 63, 47–54. [Google Scholar] [CrossRef]
- Morikawa, M.; Kino, K.; Senda, T.; Suzuki, M.; Kobayashi, T.; Miyazawa, H. Formation of a flavin-linked peptide. Molecules 2014, 19, 9552–9561. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, M.; Kino, K.; Asada, E.; Katagiri, K.; Mori-Yasumoto, K.; Suzuki, M.; Kobayashi, T.; Miyazawa, H. N′-[2-(7,8-Dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl)ethylidene]-4-nitrobenzohydrazide. Molbank 2014, 2014, M836. [Google Scholar] [CrossRef]
- Chen, D.; Huang, Y.; Jiang, H.; Yasen, W.; Guo, D.; Su, Y.; Xue, B.; Jin, X.; Zhu, X. Fabrication of activity-reporting glucose oxidase nanocapsules with oxygen-independent fluorescence variation. ACS Appl. Mater. Interfaces 2018, 10, 26005–26015. [Google Scholar] [CrossRef]
- Vicens, Q.; Mondragón, E.; Reyes, F.E.; Coish, P.; Aristoff, P.; Berman, J.; Kaur, H.; Kells, K.W.; Wickens, P.; Wilson, J.; et al. Structure–activity relationship of flavin analogues that target the flavin mononucleotide riboswitch. ACS Chem. Biol. 2018, 13, 2908–2919. [Google Scholar] [CrossRef]
- Tagami, T.; Arakawa, Y.; Minagawa, K.; Imada, Y. Efficient use of photons in photoredox/enamine dual catalysis with a peptide-bridged flavin–amine hybrid. Org. Lett. 2019, 21, 6978–6982. [Google Scholar] [CrossRef]
- Leonard, N.J.; Lambert, R.F. Synthetic spectroscopic models realted to coenzymes and base pairs. VI. Synthesis of (ω-arylalkyl)-6,7-dimethylisoalloxazines, spectroscopic model compounds related to flavin-adenine dinucleotude. J. Org. Chem. 1969, 34, 3240–3248. [Google Scholar] [CrossRef]
- Walter, A.; Storch, G. Synthetic C6-functionalized aminoflavin catalysts enable aerobic bromination of oxidation-prone substrates. Angew. Chem. Int. Ed. 2020, 59, 22505–22509. [Google Scholar] [CrossRef]
- Imada, Y.; Ohno, T.; Naota, T. Synthesis and electrochemical behavior of clothespin-shaped bisflavin compounds. Tetrahedron Lett. 2008, 49, 2523–2526. [Google Scholar] [CrossRef]
- Murahashi, S.; Ono, S.; Imada, Y. Asymmetric Baeyer-Villiger reaction with hydrogen peroxide catalyzed by a novel planar-chiral bisflavin. Angew. Chem. Int. Ed. 2002, 41, 2366–2368. [Google Scholar] [CrossRef]
- Yano, Y.; Ohya, E.; Kuwabara, Y. Association and reactivity of amphiphilic flavins. 8-Alkyl mercaptoflavins and the corresponding bis-flavins in aqueous solution. Chem. Lett. 1984, 13, 1009–1012. [Google Scholar] [CrossRef]
- Zipplies, M.F.; Staab, H.A. π…π-interactions of flavins,-II. [3.3](3,10)Isoalloxazinophane and quinhydrone-like flavin interactions. Tetrahedron Lett. 1984, 25, 1035–1038. [Google Scholar] [CrossRef]
- Barthel, A.; Trieschmann, L.; Ströhl, D.; Kluge, R.; Böhm, G.; Csuk, R. Synthesis of dimeric quinazolin-2-one, 1,4-benzodiazepin-2-one, and isoalloxazine compounds as inhibitors of amyloid peptides association. Arch. Pharm. Chem. Life Sci. 2009, 342, 445–452. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawada, T.; Kino, K.; Matsuzawa, Y.; Morikawa, M.; Okamoto, Y.; Kobayashi, T.; Tanaka, Y. N′1,N′4-bis(2-(7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl)ethylidene)succinohydrazide. Molbank 2022, 2022, M1436. https://doi.org/10.3390/M1436
Kawada T, Kino K, Matsuzawa Y, Morikawa M, Okamoto Y, Kobayashi T, Tanaka Y. N′1,N′4-bis(2-(7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl)ethylidene)succinohydrazide. Molbank. 2022; 2022(3):M1436. https://doi.org/10.3390/M1436
Chicago/Turabian StyleKawada, Taishu, Katsuhito Kino, Yoshihiko Matsuzawa, Masayuki Morikawa, Yasuko Okamoto, Takanobu Kobayashi, and Yoshiyuki Tanaka. 2022. "N′1,N′4-bis(2-(7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl)ethylidene)succinohydrazide" Molbank 2022, no. 3: M1436. https://doi.org/10.3390/M1436
APA StyleKawada, T., Kino, K., Matsuzawa, Y., Morikawa, M., Okamoto, Y., Kobayashi, T., & Tanaka, Y. (2022). N′1,N′4-bis(2-(7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl)ethylidene)succinohydrazide. Molbank, 2022(3), M1436. https://doi.org/10.3390/M1436