Allobetulin
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. Allobetulin (2)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dehaen, W.; Mashentseva, A.; Seitembetov, T. Allobetulin and Its Derivatives: Synthesis and Biological Activity. Molecules 2011, 16, 2443–2466. [Google Scholar] [CrossRef] [PubMed]
- Schulze, H.; Pieroh, K. Zur Kenntnis des Betulins. Chem. Ber. 1922, 55, 2322–2346. [Google Scholar] [CrossRef]
- Davy, G.S.; Halsall, T.G.; Jones, E.R.H.; Meakins, G.D. The chemistry of the triterpenes. Part X. The structures of some isomerisation products from betulin and betulinic acid. J. Chem. Soc. 1951, 2702–2705. [Google Scholar] [CrossRef]
- Santos, R.C.; Pinto, R.M.A.; Beja, A.M.; Salvador, J.A.R.; Paixão, J.A. 19β,28-Epoxy-18α-olean-3β-ol. Acta Cryst. 2009, E65, o2088–o2089. [Google Scholar] [CrossRef] [PubMed]
- Barton, D.H.R.; Holness, N.J.; Triterpenoids, V. Some relative configurations in rings C, D, and E of the β -amyrin and the lupeol group of triterpenoids. J. Chem. Soc. 1952, 78–92. [Google Scholar] [CrossRef]
- Errington, S.G.; Ghisalberti, E.L.; Jefferies, P.R. The chemistry of the Euphorbiaceae. XXIV. Lup-20(29)-ene-3β,16β,28-triol from Beyeria brevifolia var brevifolia. Aust. J. Chem. 1976, 29, 1809–1814. [Google Scholar] [CrossRef]
- Medvedeva, N.I.; Flekhter, O.B.; Kukovinets, O.S.; Galin, F.Z.; Tolstikov, G.A.; Baglin, I.; Cavé, C. Synthesis of 19β,28-epoxy-23,24-dinor-A-neo -18α-olean-4-en-3-one from betulin. Russ. Chem. Bull. 2007, 56, 835–837. [Google Scholar] [CrossRef]
- Green, B.; Bentley, M.D.; Chung, B.Y.; Lynch, N.G.; Jensen, B.L. Isolation of Betulin and Rearrangement to Allobetulin, A Biomimetic Natural Product Synthesis. J. Chem. Ed. 2007, 84, 1985–1987. [Google Scholar] [CrossRef]
- Li, T.-S.; Wang, J.-X.; Zheng, X.-J. Simple synthesis of allobetulin, 28-oxyallobetulin and related biomarkers from betulin and betulinic acid catalysed by solid acids. J. Chem. Soc. Perkin Trans. 1 1998, 3957–3965. [Google Scholar] [CrossRef]
- Lavoie, S.; Pichette, A.; Garneau, F.-X.; Girard, M.; Gaudet, D. Synthesis of Betulin Derivatives with Solid Supported Reagents. Synth. Commun. 2001, 31, 1565–1571. [Google Scholar] [CrossRef]
- Salvador, J.A.R.; Pinto, R.M.A.; Santos, R.C.; Le Roux, C.; Beja, A.M.; Paixão, J.A. Bismuth triflate-catalyzed Wagner-Meerwein rearrangement in terpenes. Application to the synthesis of the 18α-oleanane core and A-neo-18α-oleanene compounds from lupanes. Org. Biomol. Chem. 2009, 7, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Filippova, E.A.; Shakhmaev, R.N.; Zorin, V.V. Convenient Synthesis of Allobetulin. Russ. J. Gen. Chem. 2013, 83, 1633–1634. [Google Scholar] [CrossRef]
- Thibeault, D.; Gauthier, C.; Legault, J.; Bouchard, J.; Dufour, P.; Pichette, A. Synthesis and structure-activity relationship study of cytotoxic germanicane- and lupane-type 3β-O-monodesmosidic saponins starting from betulin. Bioorg. Med. Chem. 2007, 15, 6144–6157. [Google Scholar] [CrossRef] [PubMed]
No. | Catalyst System | Temp. °C | Solvent | Time, h | Yield, % | Ref. |
---|---|---|---|---|---|---|
1 | H2SO4 | steam bath | CH3COOH | 3 | >99% | [5] |
2 | HCl | reflux | EtOH | 22 | - a | [6] |
3 | H2SO4 on silica gel | reflux | DCM | 0.5 | 95 | [9] |
4 | Mont. KSF | reflux | DCM | 5.0 | 99 | [9] |
5 | Mont. K10 | reflux | DCM | 0.6 | 96 | [9] |
6 | Bleaching clays b | reflux | DCM | 1.0 | 98 | [9] |
7 | Expansive graphite | reflux | DCM | 2.7 | 62 | [9] |
8 | Kaolinite b | reflux | DCM | 3.5 | 99 | [9] |
9 | TsOH on silica gel | reflux | DCM | 5.0 | 93 | [9] |
10 | TsOH | reflux | DCM | 5.0 | 93 | [9] |
11 | Anhydrous FeSO4 | reflux | DCM | 12.0 | trace | [9] |
12 | Fe(NO3)3/SiO2 | reflux | DCM | 0.5 | 91 | [10] |
13 | CF3COOH | rt | CHCl3 | 8 min | 97 | [7] |
14 | TsOH | reflux | CHCl3 | 1.0 | 85 | [8] |
15 | Bi(OTf)3 | reflux | DCM | 3.0 | 95 | [11] |
16 | BiBr3 | reflux | DCM | 3.0 | 97 | [11] |
17 | Sc(OTf)3 | reflux | DCM | 4.0 | 94 | [11] |
18 | Bi(NO3)3·5H2O | rt | DCM | 48.0 | 97 | [11] |
19 | Amberlyst | rt | CHCl3 | 5.0 | 94 | [12] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grymel, M.; Adamek, J. Allobetulin. Molbank 2022, 2022, M1446. https://doi.org/10.3390/M1446
Grymel M, Adamek J. Allobetulin. Molbank. 2022; 2022(3):M1446. https://doi.org/10.3390/M1446
Chicago/Turabian StyleGrymel, Mirosława, and Jakub Adamek. 2022. "Allobetulin" Molbank 2022, no. 3: M1446. https://doi.org/10.3390/M1446
APA StyleGrymel, M., & Adamek, J. (2022). Allobetulin. Molbank, 2022(3), M1446. https://doi.org/10.3390/M1446