3-Cyclohexyl-6-phenyl-1-(p-tolyl)pyrimidine-2,4(1H,3H)-dione
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Methods
3.2. Synthesis of 3-Cyclohexyl-6-phenyl-1-(p-tolyl)pyrimidine-2,4(1H,3H)-dione (4)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garrett, H.R.; Grisham, C.M. Principles of Biochemistry with a Human Focus; Brooks/Cole: Pacific Grove, CA, USA, 2001; ISBN 0-03-097369-4. [Google Scholar]
- Newkome, G.R.; Paudler, W.W. Contemporary Heterocyclic Chemistry: Syntheses, Reactions, and Applications; Wiley: New York, NY, USA, 1982; ISBN 978-0-471-06279-0. [Google Scholar]
- Yang, J.; Guan, A.; Wu, Q.; Cui, D.; Liu, C. Design, Synthesis and Herbicidal Evaluation of Novel Uracil Derivatives Containing an Isoxazoline Moiety. Pest Manag. Sci. 2020, 76, 3395–3402. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, B.; Spiteller, M. UV-MALDI Mass Spectrometric Quantitation of Uracil Based Pesticides in Fruit Soft Drinks along with Matrix Effects Evaluation. Ecotoxicol. Environ. Saf. 2014, 100, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Parker, W.B. Enzymology of Purine and Pyrimidine Antimetabolites Used in the Treatment of Cancer. Chem. Rev. 2009, 109, 2880–2893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, D.J. The Chemistry of Heterocyclic Compounds; Wiley: Hoboken, NJ, USA, 1994; Volume 52, ISBN 978-0-471-50656-0. [Google Scholar]
- Gabriele, B.; Mancuso, R.; Salerno, G. Oxidative Carbonylation as a Powerful Tool for the Direct Synthesis of Carbonylated Heterocycles. Eur. J. Org. Chem. 2012, 2012, 6825–6839. [Google Scholar] [CrossRef]
- Wu, X.F.; Neumann, H.; Beller, M. Synthesis of Heterocycles via Palladium-Catalyzed Carbonylations. Chem. Rev. 2013, 113, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Gabriele, B.; Della Ca, N.; Mancuso, R.; Veltri, L.; Ziccarelli, I. Palladium(II)-Catalyzed Carbonylations. In Carbon Monoxide in Organic Synthesis; Gabriele, B., Ed.; Wiley: Hoboken, NJ, USA, 2021; pp. 235–294. ISBN 9783527829354. [Google Scholar]
- Perrone, S.; Cannazza, G.; Caroli, A.; Salomone, A.; Troisi, L. Ring Opening of Heterocycles Containing a C–N Double Bond: A Simple Synthesis of Imides Promoted by Acyl Palladium Species. Tetrahedron 2014, 70, 6938–6943. [Google Scholar] [CrossRef]
- Messa, F.; Perrone, S.; Capua, M.; Tolomeo, F.; Troisi, L.; Capriati, V.; Salomone, A. Towards a Sustainable Synthesis of Amides: Chemoselective Palladium-Catalysed Aminocarbonylation of Aryl Iodides in Deep Eutectic Solvents. Chem. Commun. 2018, 54, 8100–8103. [Google Scholar] [CrossRef] [PubMed]
- Messa, F.; Dilauro, G.; Paparella, A.N.; Silvestri, L.; Furlotti, G.; Iacoangeli, T.; Perrone, S.; Salomone, A. Deep Eutectic Solvents Meet Safe, Scalable and Sustainable Hydrogenations Enabled by Aluminum Powder and Pd/C. Green Chem. 2022, 24, 4388–4394. [Google Scholar] [CrossRef]
- Paparella, A.N.; Messa, F.; Dilauro, G.; Troisi, L.; Perrone, S.; Salomone, A. A Glycerol-Based Deep Eutectic Solvent as Natural Medium and Organic Reductant for Homocoupling of (Hetero)Aryl Chlorides: A Green Route to 2,2’-Bipyridine and Biaryl Scaffolds. ChemistrySelect 2022, 7, e202203438. [Google Scholar] [CrossRef]
- Perrone, S.; Capua, M.; Cannazza, G.; Salomone, A.; Troisi, L. Synthesis of β-Enamino Acid and Heteroaryl Acetic Acid Derivatives by Pd-Catalyzed Carbonylation of α-Chloroimines and 2-Chloromethyl Aza-Heterocycles. Tetrahedron Lett. 2016, 57, 1421–1424. [Google Scholar] [CrossRef]
- Capua, M.; Perrone, S.; Bona, F.; Salomone, A.; Troisi, L. A Direct Synthesis of Isocytosine Analogues by Carbonylative Coupling of α-Chloro Ketones and Guanidines. Eur. J. Org. Chem. 2017, 2017, 1780–1787. [Google Scholar] [CrossRef]
- Capua, M.; Granito, C.; Perrone, S.; Salomone, A.; Troisi, L. Palladium-Catalyzed Carbonylative Coupling of α-Chloroketones with Hydrazines: A Simple Route to Pyrazolone Derivatives. Tetrahedron Lett. 2016, 57, 3363–3367. [Google Scholar] [CrossRef]
- Perrone, S.; Capua, M.; Salomone, A.; Troisi, L. Multicomponent Synthesis of Uracil Analogues Promoted by Pd-Catalyzed Carbonylation of α-Chloroketones in the Presence of Isocyanates and Amines. J. Org. Chem. 2015, 80, 8189–8197. [Google Scholar] [CrossRef] [PubMed]
- Gabriele, B.; Salerno, G.; Mancuso, R.; Costa, M. Efficient Synthesis of Ureas by Direct Palladium-Catalyzed Oxidative Carbonylation of Amines. J. Org. Chem. 2004, 69, 4741–4750. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messa, F.; Perrone, S.; Salomone, A. 3-Cyclohexyl-6-phenyl-1-(p-tolyl)pyrimidine-2,4(1H,3H)-dione. Molbank 2023, 2023, M1611. https://doi.org/10.3390/M1611
Messa F, Perrone S, Salomone A. 3-Cyclohexyl-6-phenyl-1-(p-tolyl)pyrimidine-2,4(1H,3H)-dione. Molbank. 2023; 2023(2):M1611. https://doi.org/10.3390/M1611
Chicago/Turabian StyleMessa, Francesco, Serena Perrone, and Antonio Salomone. 2023. "3-Cyclohexyl-6-phenyl-1-(p-tolyl)pyrimidine-2,4(1H,3H)-dione" Molbank 2023, no. 2: M1611. https://doi.org/10.3390/M1611
APA StyleMessa, F., Perrone, S., & Salomone, A. (2023). 3-Cyclohexyl-6-phenyl-1-(p-tolyl)pyrimidine-2,4(1H,3H)-dione. Molbank, 2023(2), M1611. https://doi.org/10.3390/M1611