Hept-6-en-1-yl Furan-2-carboxylate
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. Synthesis of Hept-6-en-1-yl Furan-2-carboxylate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balatsky, A.V.; Balatsky, G.I.; Borysov, S.S. Resource demand growth and sustainability due to increased world consumption. Sustainability 2015, 7, 3430–3440. [Google Scholar] [CrossRef]
- Steinfeld, J.I. Energy futures and green chemistry: Competing for carbon. Sustain. Sci. 2006, 1, 123–126. [Google Scholar] [CrossRef]
- Zhironkin, S.; Rybar, R. Sustainable development processes for renewable energy technology. Processes 2022, 10, 1363. [Google Scholar] [CrossRef]
- Lewandowski, W.M.; Ryms, M.; Kosakowski, W. Thermal biomass conversion: A review. Processes 2020, 8, 516. [Google Scholar] [CrossRef]
- Perea-Moreno, M.-A.; Samerón-Manzano, E.; Perea-Moreno, A.-J. Biomass as renewable energy: Worldwide research trends. Sustainability 2019, 11, 863. [Google Scholar] [CrossRef]
- Liu, X.; Yu, D.; Luo, H.; Li, C.; Li, H. Efficient reaction systems for lignocellulosic biomass conversion to furan derivatives: A minireview. Polymers 2022, 14, 3671. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, X.; Hu, B.; Lu, G.; Wang, Y. Efficient catalytic conversion of lignocellulosic biomass into renewable liquid biofuels via furan derivatives. RSC Adv. 2014, 4, 31101–31107. [Google Scholar] [CrossRef]
- Tong, X.; Ma, Y.; Li, Y. Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Appl. Catal. A Gen. 2010, 385, 1–13. [Google Scholar] [CrossRef]
- Khemthong, P.; Yimsukanan, C.; Narkkun, T.; Srifa, A.; Witoon, T.; Pongchaiphol, S.; Kiatphuengporn, S.; Faungnawakij, K. Advances in catalytic production of value-added biochemicals and biofuels via furfural platform derived lignocellulosic biomass. Biomass Bioenergy 2021, 148, 106033. [Google Scholar] [CrossRef]
- Li, X.; Jia, P.; Wang, T. Furfural: A promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catal. 2016, 6, 7621–7640. [Google Scholar] [CrossRef]
- Adeoye, A.O.; Lawal, O.S.; Quadri, R.O.; Malomo, D.; Aliyu, M.T.; Dang, G.E.; Emojevu, E.O.; Maikato, M.J.; Yahaya, M.G.; Omonije, O.O. Sustainable Energy via Thermochemical and Biochemical Conversion of Biomass Wastes for Biofuel Production. In Transportation Energy and Dynamics; Springer: Berlin/Heidelberg, Germany, 2023; pp. 245–306. [Google Scholar]
- Lee, K.S.; Park, S.Y.; Moon, H.C.; Kim, J.K. Thermal stability of ester linkage in the presence of 1, 2, 3-Triazole moiety generated by click reaction. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 427–436. [Google Scholar] [CrossRef]
- Micillo, R.; Iacomino, M.; Perfetti, M.; Panzella, L.; Koike, K.; D’Errico, G.; d’Ischia, M.; Napolitano, A. Unexpected impact of esterification on the antioxidant activity and (photo) stability of a eumelanin from 5, 6-dihydroxyindole-2-carboxylic acid. Pigment Cell Melanoma Res. 2018, 31, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Barel, A.O.; Paye, M.; Maibach, H.I. Handbook of Cosmetic Science and Technology; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Vessally, E.; Saeidian, H.; Hosseinian, A.; Edjlali, L.; Bekhradnia, A. A review on synthetic applications of oxime esters. Curr. Org. Chem. 2017, 21, 249–271. [Google Scholar] [CrossRef]
- He, W.; He, Y.; Ye, J. Efficient Synthesis of Biobased Furoic Acid from Corncob via Chemoenzymatic Approach. Processes 2022, 10, 677. [Google Scholar] [CrossRef]
- Zulueta, M.M.L.; Janreddy, D.; Hung, S.C. One-pot methods for the protection and assembly of sugars. Isr. J. Chem. 2015, 55, 347–359. [Google Scholar] [CrossRef]
- Zeoly, L.A.; Acconcia, L.V.; Rodrigues, M.T.; Santos, H.; Cormanich, R.A.; Paniagua, J.C.; Moyano, A.; Coelho, F. One-pot organocatalyzed synthesis of tricyclic indolizines. Org. Biomol. Chem. 2023, 21, 3567–3581. [Google Scholar] [CrossRef] [PubMed]
- Dumesic, J.A. Fundamental Studies of Bifunctional Catalysts for Tandem Reactions; University of Wisconsin: Madison, WI, USA, 2023. [Google Scholar]
- Prabhu, P.; Wan, Y.; Lee, J.-M. Electrochemical conversion of biomass derived products into high-value chemicals. Matter 2020, 3, 1162–1177. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Song, L.; Qin, Y. Hept-6-en-1-yl Furan-2-carboxylate. Molbank 2024, 2024, M1828. https://doi.org/10.3390/M1828
Wang Z, Song L, Qin Y. Hept-6-en-1-yl Furan-2-carboxylate. Molbank. 2024; 2024(2):M1828. https://doi.org/10.3390/M1828
Chicago/Turabian StyleWang, Zhongwei, Lin Song, and Yukun Qin. 2024. "Hept-6-en-1-yl Furan-2-carboxylate" Molbank 2024, no. 2: M1828. https://doi.org/10.3390/M1828
APA StyleWang, Z., Song, L., & Qin, Y. (2024). Hept-6-en-1-yl Furan-2-carboxylate. Molbank, 2024(2), M1828. https://doi.org/10.3390/M1828