Introducing Bis(5-(Trifluoromethyl)pyridin-2-yl)amine Chelating Unit via Pd-Catalyzed Amination
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Apparatus
3.2. Reagents
3.3. Synthesis
3.4. X-ray Analysis of 3c
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, D.J.; Clegg, J.K.; Jolliffe, K.A.; Lindoy, L.F. Cobalt(ii), iron(ii), zinc(ii) and palladium(ii) complexes of di-topic 4’-{4-[bis(2-pyridyl)aminomethyl]phenyl}-2,2′:6′,2”-terpyridine. Synthetic and X-ray structural studies. CrystEngComm 2014, 16, 6476–6482. [Google Scholar] [CrossRef]
- Pang, J.; Tao, Y.; Freiberg, S.; Yang, X.-P.; D’Iorio, M.; Wang, S. Syntheses, structures, and electroluminescence of new blue luminescent star-shaped compounds based on 1,3,5-triazine and 1,3,5-trisubstituted benzene. J. Mater. Chem. 2002, 12, 206–212. [Google Scholar] [CrossRef]
- Sumby, C.J.; Steel, P.J. Coordination chemistry of di-2-pyridylamine-based bridging heterocyclic ligands: A structural study of coordination polymers and discrete dinuclear complexes. Inorg. Chim. Acta 2007, 360, 2100–2114. [Google Scholar] [CrossRef]
- Cheung, K.-C.; Guo, P.; So, M.-H.; Lee, L.Y.S.; Ho, K.-P.; Wong, W.-L.; Lee, K.-H.; Wong, W.-T.; Zhou, Z.-Y.; Wong, K.-Y. Electrocatalytic reduction of carbon dioxide by a polymeric film of rhenium tricarbonyl dipyridylamine. J. Organomet. Chem. 2009, 694, 2842–2845. [Google Scholar] [CrossRef]
- Cheung, K.-C.; Wong, W.-L.; So, M.-H.; Zhou, Z.-Y.; Yan, S.-C.; Wong, K.-Y. A dinuclear ruthenium catalyst with a confined cavity: Selectivity in the addition of aliphatic carboxylic acids to phenylacetylene. Chem. Commun. 2013, 49, 710–712. [Google Scholar] [CrossRef] [PubMed]
- Schnidrig, S.; Bachmann, C.; Müller, P.; Weder, N.; Spingler, B.; Joliat-Wick, E.; Mosberger, M.; Windisch, J.; Alberto, R.; Probst, B. Structure–Activity and Stability Relationships for Cobalt Polypyridyl-Based Hydrogen-Evolving Catalysts in Water. ChemSusChem 2017, 10, 4570–4580. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Wang, J.; Li, L.; Wang, R. The copper-free Sonogashira cross-coupling reaction promoted by palladium complexes of nitrogen-containing chelating ligands in neat water at room temperature. Dalton Trans. 2014, 43, 2098–2103. [Google Scholar] [CrossRef] [PubMed]
- Kursunlu, A.N.; Şahin, E.; Güler, E. Bodipy/dipyridylamino-based “turn-on” fluorescent chemosensor for trivalent chromium cations: Characterization and photophysical properties. RSC Adv. 2015, 5, 5951–5957. [Google Scholar] [CrossRef]
- Weng, Y.-Q.; Teng, Y.-L.; Yue, F.; Zhong, Y.-R.; Ye, B.-H. A new selective fluorescent chemosensor for Cu(II) ion based on zinc porphyrin-dipyridylamino. Inorg. Chem. Commun. 2007, 10, 443–446. [Google Scholar] [CrossRef]
- Xie, Y.; Ding, Y.; Li, X.; Wang, C.; Hill, J.P.; Ariga, K.; Zhang, W.; Zhu, W. Selective, sensitive and reversible “turn-on” fluorescent cyanide probes based on 2,2’-dipyridylaminoanthracene–Cu2+ ensembles. Chem. Commun. 2012, 48, 11513–11515. [Google Scholar] [CrossRef]
- Ni, J.; Wei, K.-J.; Min, Y.; Chen, Y.; Zhan, S.; Li, D.; Liu, Y. Copper(i) coordination polymers of 2,2’-dipyridylamine derivatives: Syntheses, structures, and luminescence. Dalton Trans. 2012, 41, 5280–5293. [Google Scholar] [CrossRef]
- Chitrapriya, N.; Shin, J.H.; Hwang, I.H.; Kim, Y.; Kim, C.; Kim, S.K. Synthesis, DNA binding profile and DNA cleavage pathway of divalent metal complexes. RSC Adv. 2015, 5, 68067–68075. [Google Scholar] [CrossRef]
- Ghebreyessus, K.; Peralta, A.; Katdare, M.; Prabhakaran, K.; Paranawithana, S. Ruthenium(II)-arene complexes with naphthalimide-tagged N,O- and N,N-chelating ligands: Synthesis and biological evaluation. Inorg. Chim. Acta 2015, 434, 239–251. [Google Scholar] [CrossRef]
- Kinunda, G.; Jaganyi, D. Kinetic and mechanistic studies of cisplatin analogues bearing 2,2′-dipyridylalkylamine ligands. Transition Met. Chem. 2016, 41, 235–248. [Google Scholar] [CrossRef]
- Rauterkus, M.J.; Fakih, S.; Mock, C.; Puscasu, I.; Krebs, B. Cisplatin analogues with 2,2′-dipyridylamine ligands and their reactions with DNA model nucleobases. Inorg. Chim. Acta 2003, 350, 355–365. [Google Scholar] [CrossRef]
- Abula, A.; Xu, Z.; Zhu, Z.; Peng, C.; Chen, Z.; Zhu, W.; Aisa, H.A. Substitution Effect of the Trifluoromethyl Group on the Bioactivity in Medicinal Chemistry: Statistical Analysis and Energy Calculations. J. Chem. Inform. Model. 2020, 60, 6242–6250. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, J.; Liu, D.; Huang, T.; Li, D. Effects of Electron Affinity and Steric Hindrance of the Trifluoromethyl Group on the π-Bridge in Designing Blue Thermally Activated Delayed Fluorescence Emitters. Chem. Eur. J. 2020, 26, 6899–6909. [Google Scholar] [CrossRef]
- Yuan, W.; Jin, G.; Su, N.; Hu, D.; Shi, W.; Zheng, Y.-X.; Tao, Y. The electron inductive effect of dual non-conjugated trifluoromethyl acceptors for highly efficient thermally activated delayed fluorescence OLEDs. Dye. Pigment. 2020, 183, 108705. [Google Scholar] [CrossRef]
- Glyn, R.J.; Pattison, G. Effects of Replacing Oxygenated Functionality with Fluorine on Lipophilicity. J. Med. Chem. 2021, 64, 10246–10259. [Google Scholar] [CrossRef]
- Lezama, J.O.G.; Robles, N.L. Analysis of the effects of trifluoromethyl group on the conformational properties of meta substituted thioacetanilide. J. Mol. Struct. 2021, 1236, 130259. [Google Scholar] [CrossRef]
- Abel, A.S.; Averin, A.D.; Buryak, A.K.; Savelyev, E.N.; Orlinson, B.S.; Novakov, I.A.; Beletskaya, I.P. The Palladium-Catalyzed Heteroarylation of Adamantylalkyl Amines with Dihalogenopyridines: Scope and Limitations. Synthesis 2017, 49, 5067–5080. [Google Scholar] [CrossRef]
- Kharlamova, A.D.; Abel, A.S.; Averin, A.D.; Beletskaya, I.P. N,N-Di(pyridin-2-yl)quinolin-6-amine: Synthesis and coordination properties. Russ. Chem. Bull. 2019, 68, 597–600. [Google Scholar] [CrossRef]
- Wagaw, S.; Buchwald, S.L. The Synthesis of Aminopyridines: A Method Employing Palladium-Catalyzed Carbon-Nitrogen Bond Formation. J. Org. Chem. 1996, 61, 7240–7241. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Ogata, T.; Hartwig, J.F. Highly Reactive, General and Long-Lived Catalysts for Palladium-Catalyzed Amination of Heteroaryl and Aryl Chlorides, Bromides, and Iodides: Scope and Structure–Activity Relationships. J. Am. Chem. Soc. 2008, 130, 6586–6596. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; He, Y.; Liu, L.; Zhu, Q. A Metal-Free Tandem Demethylenation/C(sp2)–H Cycloamination Process of N-Benzyl-2-aminopyridines via C–C and C–N Bond Cleavage. Org. Lett. 2013, 15, 3476–3479. [Google Scholar] [CrossRef] [PubMed]
- Lyakhovich, M.S.; Murashkina, A.V.; Panchenko, S.P.; Averin, A.D.; Abel, A.S.; Maloshitskaya, O.A.; Savelyev, E.N.; Orlinson, B.S.; Novakov, I.A.; Beletskaya, I.P. Arylation of Adamantanamines: XI. Comparison of the Catalytic Efficiency of Palladium and Copper Complexes in Reactions of Adamantanamines with Fluorinated 2-Bromopyridines. Russ. J. Org. Chem. 2021, 57, 768–783. [Google Scholar] [CrossRef]
- Duan, J.; Choy, P.Y.; Gan, K.B.; Kwong, F.Y. N-Difluoromethylation of N-pyridyl-substituted anilines with ethyl bromodifluoroacetate. Org. Biomol. Chem. 2022, 20, 1883–1887. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Qiao, Z.; Zhou, Q.; Xue, D.; Wang, K.; Shao, L. Discovery of Potent and Selective Transient Receptor Potential Vanilloid 1 (TRPV1) Agonists with Analgesic Effects In Vivo Based on the Functional Conversion Induced by Altering the Orientation of the Indazole Core. J. Med. Chem. 2022, 65, 11658–11678. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Nong, D.-Z.; Li, J.-S.; Li, G.; Zhang, W.; Cao, R.; Wang, C.; Xiao, J.; Xue, D. General Method for the Amination of Aryl Halides with Primary and Secondary Alkyl Amines via Nickel Photocatalysis. J. Org. Chem. 2022, 87, 10285–10297. [Google Scholar] [CrossRef]
- Wu, G.; Xu, X.; Wang, S.; Chen, L.; Pang, B.; Ma, T.; Ji, Y. Metal-free directed C–H borylation of 2-(N-methylanilino)-5-fluoropyridines and 2-benzyl-5-fluoropyridines. Chin. Chem. Lett. 2022, 33, 2005–2008. [Google Scholar] [CrossRef]
- Alexander, R.P.; Aujla, P.S.; Crepy, K.V.L.; Foley, A.M.; Franklin, R.J.; Haughan, A.F.; Horsley, H.T.; Jones, W.M.; Lallemand, B.I.L.F.; Mack, S.R.; et al. Fused Thiazole Derivatives as PI3 Kinase Inhibitors and Their Preparation, Pharmaceutical Compositions and Use in the Treatment of Diseases. WO2008001076, 3 January 2008. [Google Scholar]
- Ukai, T.; Kawazura, H.; Ishii, Y.; Bonnet, J.J.; Ibers, J.A. Chemistry of dibenzylideneacetone-palladium(0) complexes. J. Organomet. Chem. 1974, 65, 253–266. [Google Scholar] [CrossRef]
- Li, H.-H.; Wu, J.-X.; Dong, H.-J.; Wu, Y.-L.; Chen, Z.-R. A combined experimental and theoretical study of an semi-conductive iodoargentate hybrid induced by large conjugate cation. J. Mol. Struct. 2011, 987, 180–185. [Google Scholar] [CrossRef]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Entry 1 | Ligand | Pd(dba)2/L Loading, mol% | Yield of 3a, % 2 | Yield of 4a, % 2 |
---|---|---|---|---|
1 | DavePhos 3 | 4/4.5 | 6 | 7 |
2 | DavePhos 3 | 8/9 | 32 | 17 |
3 | rac-BINAP 4 | 4/4.5 | 56 5 | 12 |
4 | rac-BINAP 4 | 8/9 | 71 5 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korinskiy, N.A.; Abel, A.S.; Ionova, V.A.; Bezzubov, S.I.; Averin, A.D.; Beletskaya, I.P. Introducing Bis(5-(Trifluoromethyl)pyridin-2-yl)amine Chelating Unit via Pd-Catalyzed Amination. Molbank 2024, 2024, M1831. https://doi.org/10.3390/M1831
Korinskiy NA, Abel AS, Ionova VA, Bezzubov SI, Averin AD, Beletskaya IP. Introducing Bis(5-(Trifluoromethyl)pyridin-2-yl)amine Chelating Unit via Pd-Catalyzed Amination. Molbank. 2024; 2024(2):M1831. https://doi.org/10.3390/M1831
Chicago/Turabian StyleKorinskiy, Nikolay A., Anton S. Abel, Violetta A. Ionova, Stanislav I. Bezzubov, Alexei D. Averin, and Irina P. Beletskaya. 2024. "Introducing Bis(5-(Trifluoromethyl)pyridin-2-yl)amine Chelating Unit via Pd-Catalyzed Amination" Molbank 2024, no. 2: M1831. https://doi.org/10.3390/M1831
APA StyleKorinskiy, N. A., Abel, A. S., Ionova, V. A., Bezzubov, S. I., Averin, A. D., & Beletskaya, I. P. (2024). Introducing Bis(5-(Trifluoromethyl)pyridin-2-yl)amine Chelating Unit via Pd-Catalyzed Amination. Molbank, 2024(2), M1831. https://doi.org/10.3390/M1831