One Pot Synthesis of New Powerful Building Blocks in 1,8-Naphthalimide Chemistry
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Synthesis of 5-Nitro-1H,3H-benzo[de]isochromene-1,3-dione(3-nitro-1,8-naphthalic Anhydride 2)
3.3. Synthesis of 5,6-Dibromo-8-nitro-1H,3H-benzo[de]isochromene-1,3-dione(3,4-dibromo-6-nitro-1,8-naphthalic Anhydride 3)
3.4. Synthesis of 5-Bromo-8-nitro-1H,3H-benzo[de]isochromene-1,3-dione(3-bromo-6-nitro-1,8-naphthalic Anhydride 4)
3.5. Synthesis of 5,6-Dibromo-2-(2-ethylhexyl)-8-nitro-1H-benzo[de]isoquinoline-1,3(2H)-dione(N-(2-ethylhexyl)-3,4-dibromo-6-nitro-1,8-naphthalimide 5)
3.6. Synthesis of Dibutyl 3,4-Dibromo-6-nitronaphthalene-1,8-dicarboxylate 6
3.7. Synthesis of 5-Bromo-2-(2-ethylhexyl)-8-nitro-1H-benzo[de]isoquinoline-1,3(2H)-dione(N-(2-ethylhexyl)-3-bromo-6-nitro-1,8-naphthalimide 7)
3.8. Synthesis of Dibutyl 3-Bromo-6-nitronaphthalene-1,8-dicarboxylate 8
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, T.; Zagranyarski, Y.; Skabeev, A.; Müllen, K.; Li, C. Perylene Pigments as Alternatives to Phthalocyanine and Indanthrone Blue. Dye. Pigment. 2021, 196, 109780. [Google Scholar] [CrossRef]
- Dodangeh, M.; Grabchev, I.; Staneva, D.; Gharanjig, K. 1,8-Naphthalimide Derivatives as Dyes for Textile and Polymeric Materials: A Review. Fibers Polym. 2021, 22, 2368–2379. [Google Scholar] [CrossRef]
- Anand, T.; Ashok Kumar, S.K.; Sahoo, S.K. A New Al3+ Selective Fluorescent Turn-on Sensor Based on Hydrazide-Naphthalic Anhydride Conjugate and Its Application in Live Cells Imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 204, 105–112. [Google Scholar] [CrossRef]
- Dey, N.; Bhattacharya, S. Switchable Optical Probes for Simultaneous Targeting of Multiple Anions. Chem. Asian J. 2020, 15, 1759–1779. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Dahlhauser, S.D.; Anslyn, E.V. New Autoinductive Cascade for the Optical Sensing of Fluoride: Application in the Detection of Phosphoryl Fluoride Nerve Agents. J. Am. Chem. Soc. 2017, 139, 4635–4638. [Google Scholar] [CrossRef]
- Kaloyanova, S.; Zagranyarski, Y.; Ritz, S.; Hanulová, M.; Koynov, K.; Vonderheit, A.; Müllen, K.; Peneva, K. Water-Soluble NIR-Absorbing Rylene Chromophores for Selective Staining of Cellular Organelles. J. Am. Chem. Soc. 2016, 138, 2881–2884. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; Tian, S.; Wang, Y.; Zhang, C.; Meng, Q.; Zhang, R.; Zhang, Z. 1,8-Naphthalimide-Triphenylamine-Based Red-Emitting Fluorescence Probes for the Detection of Hydrazine in Real Water Samples and Applications in Bioimaging in Vivo. Sens. Actuators B Chem. 2024, 398, 134725. [Google Scholar] [CrossRef]
- Day, A.H.; Domarkas, J.; Nigam, S.; Renard, I.; Cawthorne, C.; Burke, B.P.; Bahra, G.S.; Oyston, P.C.F.; Fallis, I.A.; Archibald, S.J.; et al. Towards Dual SPECT/Optical Bioimaging with a Mitochondrial Targeting, 99m Tc(i) Radiolabelled 1,8-Naphthalimide Conjugate. Dalton Trans. 2020, 49, 511–523. [Google Scholar] [CrossRef]
- Liao, Q.; Kang, Q.; Xu, B.; Hou, J. Design and Application of an Asymmetric Naphthalimide-Based Molecule with Improved Hydrophobicity for Highly Stable Organic Solar Cells. JACS Au 2022, 2, 1918–1928. [Google Scholar] [CrossRef]
- Kagatikar, S.; Salunkhe, P.; Sunil, D.; Kekuda, D. Organic and Hybrid Diode Features of an N-Type 1,8-Naphthalimide Derivative. J. Electron. Mater. 2023, 52, 5401–5411. [Google Scholar] [CrossRef]
- Zhu, W.; Song, L.; Yang, Y.; Tian, H. Novel Bisthienylethene Containing Ferrocenyl-Substituted Naphthalimide: A Photo- and Redox Multi-Addressable Molecular Switch. Chem. A Eur. J. 2012, 18, 13388–13394. [Google Scholar] [CrossRef] [PubMed]
- Kolosov, D.; Adamovich, V.; Djurovich, P.; Thompson, M.E.; Adachi, C. 1,8-Naphthalimides in Phosphorescent Organic LEDs: The Interplay between Dopant, Exciplex, and Host Emission. J. Am. Chem. Soc. 2002, 124, 9945–9954. [Google Scholar] [CrossRef]
- Ulla, H.; Kiran, M.R.; Garudachari, B.; Ahipa, T.N.; Tarafder, K.; Adhikari, A.V.; Umesh, G.; Satyanarayan, M.N. Blue Emitting 1,8-Naphthalimides with Electron Transport Properties for Organic Light Emitting Diode Applications. J. Mol. Struct. 2017, 1143, 344–354. [Google Scholar] [CrossRef]
- Ulla, H.; Raveendra Kiran, M.; Garudachari, B.; Satyanarayan, M.N.; Umesh, G.; Isloor, A.M. Blue Emitting Halogen–Phenoxy Substituted 1,8-Naphthalimides for Potential Organic Light Emitting Diode Applications. Opt. Mater. 2014, 37, 311–321. [Google Scholar] [CrossRef]
- Arunchai, R.; Sudyoadsuk, T.; Prachumrak, N.; Namuangruk, S.; Promarak, V.; Sukwattanasinitt, M.; Rashatasakhon, P. Synthesis and Characterization of New Triphenylamino-1,8-Naphthalimides for Organic Light-Emitting Diode Applications. New J. Chem. 2015, 39, 2807–2814. [Google Scholar] [CrossRef]
- Zagranyarski, Y.; Mutovska, M.; Petrova, P.; Tomova, R.; Ivanov, P.; Stoyanov, S. Dioxin-Annulated 1,8-Naphthalimides—Synthesis, Spectral and Electrochemical Properties, and Application in OLED. Dye. Pigment. 2021, 184, 108585. [Google Scholar] [CrossRef]
- Abul-Futouh, H.; Zagranyarski, Y.; Müller, C.; Schulz, M.; Kupfer, S.; Görls, H.; El-khateeb, M.; Gräfe, S.; Dietzek, B.; Peneva, K.; et al. [FeFe]-Hydrogenase H-Cluster Mimics Mediated by Naphthalene Monoimide Derivatives of Peri-Substituted Dichalcogenides. Dalton Trans. 2017, 46, 11180–11191. [Google Scholar] [CrossRef]
- Mutovska, M.; Skabeev, A.; Konstantinov, K.; Cabanetos, C.; Stoyanov, S.; Zagranyarski, Y. One-Pot Synthesis of Fused-Rings Heterocyclic Systems Based on Symmetrically Benzofuran Annulated 1,8-Naphthalimides. Dye. Pigment. 2023, 220, 4–10. [Google Scholar] [CrossRef]
- Grayshan, P.H.; Peters, A.T. New Intermediates and Dyestuffs for Synthetic Fibres. Part IV. 2-Nitronaphthalene-1,8-Dicarboxylic Anhydride. J. Chem. Soc. C Org. 1971, 3599. [Google Scholar] [CrossRef]
- Khalaf, H.; Rimpler, M. 5-Isothiocyanato-1, 8-Naphthalindicarbonsäure-4-Methylphenylimid, Ein Neues Fluoreszenzreagenz Für Aminogruppen-Haltige Stoffe. Hoppe Seylers Z Physiol. Chem. 1977, 358, 505–512. [Google Scholar] [CrossRef]
- Vasilev, A.A.; Baluschev, S.; Cheshmedzhieva, D.; Ilieva, S.; Castaño, O.D.; Vaquero, J.J.; Angelova, S.E.; Landfester, K. Assembly of New Merocyanine Chromophores with a 1,8-Naphthalimide Core by a New Method for the Synthesis of the Methine Function. Aust. J. Chem. 2015, 68, 1399. [Google Scholar] [CrossRef]
- Dong, M.; Wang, Y.-W.; Peng, Y. Highly Selective Ratiometric Fluorescent Sensing for Hg2+ and Au3+, Respectively, in Aqueous Media. Org. Lett. 2010, 12, 5310–5313. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, A.; Moradian, S.; Gharanjig, K.; Taromi, F.A. Synthesis and Characterization of Some Monoazo Disperse Dyestuffs Based on Naphthalimide Derivatives for Dyeing of Polyester Fabrics. J. Chin. Chem. Soc. 2005, 52, 495–502. [Google Scholar] [CrossRef]
- Li, F.; Cui, J.; Guo, L.; Qian, X.; Ren, W.; Wang, K.; Liu, F. Molecular Design, Chemical Synthesis, and Biological Evaluation of ‘4-1’ Pentacyclic Aryl/Heteroaryl-Imidazonaphthalimides. Bioorg Med. Chem. 2007, 15, 5114–5121. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Yin, H.; Chen, Z.; Qian, X.; Xu, Y. Oxo-Heterocyclic Fused Naphthalimides as Antitumor Agents: Synthesis and Biological Evaluation. Eur. J. Med. Chem. 2013, 62, 130–138. [Google Scholar] [CrossRef]
- Suda, A.; Kawasaki, K.; Komiyama, S.; Isshiki, Y.; Yoon, D.-O.; Kim, S.-J.; Na, Y.-J.; Hasegawa, K.; Fukami, T.A.; Sato, S.; et al. Design and Synthesis of 2-Amino-6-(1H,3H-Benzo[de]Isochromen-6-Yl)-1,3,5-Triazines as Novel Hsp90 Inhibitors. Bioorg. Med. Chem. 2014, 22, 892–905. [Google Scholar] [CrossRef]
- Braña, M.F.; Morán, M.; de Vega, M.J.P.; Pita-Romero, I.; Walker, N. Synthesis and Cytostatic Activity of Enynes, Enediynes and Dienediynes Linked to Intercalators. Tetrahedron 1995, 51, 9127–9138. [Google Scholar] [CrossRef]
- Lovrinčević, V.; Zheng, D.; Baudin-Marie, M.; Marić, M.; Uzelac, L.; Škorić, I.; Ma, J.; Vuk, D. Aminonaphthalene and Aminoquinoline Photocages: Meta-Effect and Photo-Release of Carboxylic Acids and Alcohols. J. Photochem. Photobiol. A Chem. 2024, 454, 115715. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutovska, M.; Anastasova, D.; Simeonova, N.; Zagranyarska, I.; Vlahova, Z.; Ugrinova, I.; Stoyanov, S.; Zagranyarski, Y. One Pot Synthesis of New Powerful Building Blocks in 1,8-Naphthalimide Chemistry. Molbank 2024, 2024, M1914. https://doi.org/10.3390/M1914
Mutovska M, Anastasova D, Simeonova N, Zagranyarska I, Vlahova Z, Ugrinova I, Stoyanov S, Zagranyarski Y. One Pot Synthesis of New Powerful Building Blocks in 1,8-Naphthalimide Chemistry. Molbank. 2024; 2024(4):M1914. https://doi.org/10.3390/M1914
Chicago/Turabian StyleMutovska, Monika, Denitsa Anastasova, Natali Simeonova, Irena Zagranyarska, Zlatina Vlahova, Iva Ugrinova, Stanimir Stoyanov, and Yulian Zagranyarski. 2024. "One Pot Synthesis of New Powerful Building Blocks in 1,8-Naphthalimide Chemistry" Molbank 2024, no. 4: M1914. https://doi.org/10.3390/M1914
APA StyleMutovska, M., Anastasova, D., Simeonova, N., Zagranyarska, I., Vlahova, Z., Ugrinova, I., Stoyanov, S., & Zagranyarski, Y. (2024). One Pot Synthesis of New Powerful Building Blocks in 1,8-Naphthalimide Chemistry. Molbank, 2024(4), M1914. https://doi.org/10.3390/M1914