9,10-Bis(5H-dibenzo[b,f]azepino)anthracene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Photophysical Properties
3. Conclusions
4. Materials and Methods
4.1. General Considerations
4.2. Synthesis of 9,10-Bis(5H-dibenzo[b,f]azepino)anthracene 1
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, Y.-H.; Huang, C.-H.; Yeh, J.-M.; Huang, P.-T. Effect of methyl substituents on the N-diaryl rings of anthracene-9,10-diamine derivatives for OLEDs applications. Org. Electron. 2011, 12, 694–702. [Google Scholar] [CrossRef]
- Yu, M.-X.; Duan, J.-P.; Lin, C.-H.; Cheng, C.-H.; Tao, Y.-T. Diaminoanthracene Derivatives as High-Performance Green Host Electroluminescent Materials. Chem. Mater. 2002, 14, 3958–3963. [Google Scholar] [CrossRef]
- Dey, J.; Warner, I.M. Dual Fluorescence of 9-(N,N-Dimethylamino)anthracene: Effect of Solvent Polarity and Viscosity. J. Phys. Chem. A 1997, 101, 4872–4878. [Google Scholar] [CrossRef]
- Lambert, C.; Risko, C.; Coropceanu, V.; Schelter, J.; Amthor, S.; Gruhn, N.E.; Durivage, J.C.; Brédas, J.-L. Electronic Coupling in Tetraanisylarylenediamine Mixed-Valence Systems: The Interplay between Bridge Energy and Geometric Factors. J. Am. Chem. Soc. 2005, 127, 8508–8516. [Google Scholar] [CrossRef]
- Sasaki, S.; Hattori, K.; Igawa, K.; Konishi, G.-i. Directional Control of π-Conjugation Enabled by Distortion of the Donor Plane in Diarylaminoanthracenes: A Photophysical Study. J. Phys. Chem. A 2015, 119, 4898–4906. [Google Scholar] [CrossRef]
- Ito, A.; Kawanishi, K.; Sakuda, E.; Kitamura, N. Synthetic Control of Spectroscopic and Photophysical Properties of Triarylborane Derivatives Having Peripheral Electron-Donating Groups. Chem. Eur. J. 2014, 20, 3940–3953. [Google Scholar] [CrossRef]
- Uebe, M.; Sakamaki, D.; Ito, A. Electronic and Photophysical Properties of 9,10-Anthrylene-Bridged B-π-N Donor-Acceptor Molecules with Solid-State Emission in the Yellow to Red Region. ChemPlusChem 2019, 84, 1305–1313. [Google Scholar] [CrossRef]
- Uchida, M.; Ono, Y.; Yokoi, H.; Nakano, T.; Furukawa, K. Undoping Type of Highly Efficient Organic Light Emitting Diodes. J. Photopolym. Sci. Technol. 2001, 14, 305–310. [Google Scholar] [CrossRef]
- Kubota, K.; Seo, T.; Koide, K.; Hasegawa, Y.; Ito, H. Olefin-accelerated solid-state C–N cross-coupling reactions using mechanochemistry. Nat. Commun. 2019, 10, 111. [Google Scholar] [CrossRef]
- Yuan, Z.; Taylor, N.J.; Ramachandran, R.; Marder, T.B. Third-order Nonlinear Optical Properties of Organoboron Compounds: Molecular Structures and Second Hyperpolarizabilities. Appl. Organomet. Chem. 1996, 10, 305–316. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Akiyama, S.; Tamao, K. Tri-9-anthrylborane and Its Derivatives: New Boron-Containing π-Electron Systems with Divergently Extended π-Conjugation through Boron. J. Am. Chem. Soc. 2000, 122, 6335–6336. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Akiyama, S.; Tamao, K. Colorimetric Fluoride Ion Sensing by Boron-Containing π-Electron Systems. J. Am. Chem. Soc. 2001, 123, 11372–11375. [Google Scholar] [CrossRef] [PubMed]
- Charlot, M.; Porrès, L.; Entwistle, C.D.; Beeby, A.; Marder, T.B.; Blanchard-Desce, M. Investigation of two-photon absorption behavior in symmetrical acceptor–π–acceptor derivatives with dimesitylboryl end-groups. Evidence of new engineering routes for TPA/transparency trade-off optimization. Phys. Chem. Chem. Phys. 2005, 7, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, H.; Fuse, K.; Maeda, N.; Kuwabara, T. Arylboronic Acid Pinacol Esters as Stable Boron Sources for Dihydrodibenzoborepin Derivatives and a Dibenzoborole. Molecules 2024, 29, 4024. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Buchwald, S.L. Palladium-Catalyzed N-Arylation of Iminodibenzyls and Iminostilbenes with Aryl- and Heteroaryl Halides. Chem. Eur. J. 2016, 22, 14186–14189. [Google Scholar] [CrossRef] [PubMed]
- Tsvelikhovsky, D.; Buchwald, S.L. Correction to Synthesis of Heterocycles via Pd-Ligand Controlled Cyclization of 2-Chloro-N-(2-vinyl)aniline: Preparation of Carbazoles, Indoles, Dibenzazepines, and Acridines. J. Am. Chem. Soc. 2012, 134, 16917. [Google Scholar] [CrossRef]
- Tanaka, R.; Nabae, A.; Yamane, K.; Makino, K.; Tabata, H.; Oshitari, T.; Natsugari, H.; Takahashi, H. Atropisomeric Properties of N-Alkyl/Aryl 5H-Dibenz[b,f]azepines. Chem. Pharm. Bull. 2022, 70, 573–579. [Google Scholar] [CrossRef]
- Murai, M.; Enoki, T.; Yamaguchi, S. Dithienoazepine-Based Near-Infrared Dyes: Janus-Faced Effects of a Thiophene-Fused Structure on Antiaromatic Azepines. Angew. Chem., Int. Ed. 2023, 62, e202311445. [Google Scholar] [CrossRef]
- Karimata, A.; Suzuki, S.; Kozaki, M.; Okada, K. Stereoelectronic control of oxidation potentials of 3,7-bis(diarylamino)phenothiazines. RSC Adv. 2017, 7, 56144–56152. [Google Scholar] [CrossRef]
- Pashazadeh, R.; Pander, P.; Bucinskas, A.; Skabara, P.J.; Dias, F.B.; Grazulevicius, J.V. An iminodibenzyl–quinoxaline–iminodibenzyl scaffold as a mechanochromic and dual emitter: Donor and bridge effects on optical properties. Chem. Commun. 2018, 54, 13857–13860. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, K.-H.; Meng, F.-Y.; Tseng, S.-M.; Chou, P.-T. Broadening the Horizon of the Bell–Evans–Polanyi Principle towards Optically Triggered Structure Planarization. Angew. Chem. Int. Ed. 2021, 60, 7205–7212. [Google Scholar] [CrossRef] [PubMed]
- Toyota, A.; Koseki, S.; Umeda, H.; Suzuki, M.; Fujimoto, K. Pseudo-Jahn−Teller Distortion from Planarity in Heterocyclic Seven- and Eight-Membered Ring Systems with Eight π Electrons. J. Phys. Chem. A 2003, 107, 2749–2756. [Google Scholar] [CrossRef]
- Zhang, D.; Song, X.; Cai, M.; Duan, L. Blocking Energy-Loss Pathways for Ideal Fluorescent Organic Light-Emitting Diodes with Thermally Activated Delayed Fluorescent Sensitizers. Adv. Mater. 2018, 30, 1705250. [Google Scholar] [CrossRef] [PubMed]
- Sekiguchi, A.; Ebata, K.; Kabuto, C.; Sakurai, H. Bis[(dimethoxyethane)lithium(I)] 1,2,4,5-tetrakis(trimethylsilyl)benzenide. The first 6C-8π antiaromatic benzene dianion. J. Am. Chem. Soc. 1991, 113, 7081–7082. [Google Scholar] [CrossRef]
- Ito, S.; Ishii, Y.; Kuwabara, T. Inorganic salt-assisted assembly of anionic π-conjugated rings enabling 7Li NMR-based evaluation of antiaromaticity. Dalton Trans. 2022, 51, 16397–16402. [Google Scholar] [CrossRef]
- Dardonville, C.; Jimeno, M.L.; Alkorta, I.; Elguero, J. Homoheteroaromaticity: The case study of azepine and dibenzazepine. Org. Biomol. Chem. 2004, 2, 1587–1591. [Google Scholar] [CrossRef]
- Zimmermann Crocomo, P.; Kaihara, T.; Kawaguchi, S.; Stachelek, P.; Minakata, S.; de Silva, P.; Data, P.; Takeda, Y. The Impact of C2 Insertion into a Carbazole Donor on the Physicochemical Properties of Dibenzo[a,j]phenazine-Cored Donor–Acceptor–Donor Triads. Chem. Eur. J. 2021, 27, 13390–13398. [Google Scholar] [CrossRef]
- Fukazawa, J.; Takegoshi, K. Phase covariance in NMR signal. Phys. Chem. Chem. Phys. 2010, 12, 11225–11227. [Google Scholar] [CrossRef]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawaguchi, H.; Kuwabara, T. 9,10-Bis(5H-dibenzo[b,f]azepino)anthracene. Molbank 2024, 2024, M1917. https://doi.org/10.3390/M1917
Kawaguchi H, Kuwabara T. 9,10-Bis(5H-dibenzo[b,f]azepino)anthracene. Molbank. 2024; 2024(4):M1917. https://doi.org/10.3390/M1917
Chicago/Turabian StyleKawaguchi, Himeko, and Takuya Kuwabara. 2024. "9,10-Bis(5H-dibenzo[b,f]azepino)anthracene" Molbank 2024, no. 4: M1917. https://doi.org/10.3390/M1917
APA StyleKawaguchi, H., & Kuwabara, T. (2024). 9,10-Bis(5H-dibenzo[b,f]azepino)anthracene. Molbank, 2024(4), M1917. https://doi.org/10.3390/M1917