5,10-Diiododibenzo[a,e]pentalene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Improved Synthesis of 5,10-Diiododibenzo[a,e]pentalene 1
2.2. X-Ray Diffraction Studies
3. Materials and Methods
3.1. General Considerations
3.2. Synthesis of 5,10-Diiododibenzo[a,e]pentalene 1 from 2a
3.3. Synthesis of 1 from 2b
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hong, C.; Baltazar, J.; Tovar, J.D. Manifestations of Antiaromaticity in Organic Materials: Case Studies of Cyclobutadiene, Borole, and Pentalene. Eur. J. Org. Chem. 2022, 2022, e202101343. [Google Scholar] [CrossRef]
- Saito, M. Synthesis and Reactions of Dibenzo[a,e]pentalenes. Symmetry 2010, 2, 950–969. [Google Scholar] [CrossRef]
- Konishi, A.; Yasuda, M. Breathing New Life into Nonalternant Hydrocarbon Chemistry: Syntheses and Properties of Polycyclic Hydrocarbons Containing Azulene, Pentalene, and Heptalene Frameworks. Chem. Lett. 2020, 50, 195–212. [Google Scholar] [CrossRef]
- Hopf, H. Pentalenes—From Highly Reactive Antiaromatics to Substrates for Material Science. Angew. Chem. Int. Ed. 2013, 52, 12224–12226. [Google Scholar] [CrossRef] [PubMed]
- Kawase, T.; Nishida, J.-i. π-Extended Pentalenes: The Revival of the Old Compound from New Standpoints. Chem. Rec. 2015, 15, 1045–1059. [Google Scholar] [CrossRef]
- Wilbuer, J.; Grenz, D.C.; Schnakenburg, G.; Esser, B. Donor- and acceptor-functionalized dibenzo[a,e]pentalenes: Modulation of the electronic band gap. Org. Chem. Front. 2017, 4, 658–663. [Google Scholar] [CrossRef]
- Grenz, D.C.; Schmidt, M.; Kratzert, D.; Esser, B. Dibenzo[a,e]pentalenes with Low-Lying LUMO Energy Levels as Potential n-Type Materials. J. Org. Chem. 2018, 83, 656–663. [Google Scholar] [CrossRef]
- Wassy, D.; Pfeifer, M.; Esser, B. Synthesis and Properties of Conjugated Nanohoops Incorporating Dibenzo[a,e]pentalenes: [2]DBP[12]CPPs. J. Org. Chem. 2020, 85, 34–43. [Google Scholar] [CrossRef]
- Hermann, M.; Wassy, D.; Kohn, J.; Seitz, P.; Betschart, M.U.; Grimme, S.; Esser, B. Chiral Dibenzopentalene-Based Conjugated Nanohoops through Stereoselective Synthesis. Angew. Chem. Int. Ed. 2021, 60, 10680–10689. [Google Scholar] [CrossRef]
- Wössner, J.S.; Wassy, D.; Weber, A.; Bovenkerk, M.; Hermann, M.; Schmidt, M.; Esser, B. [n]Cyclodibenzopentalenes as Antiaromatic Curved Nanocarbons with High Strain and Strong Fullerene Binding. J. Am. Chem. Soc. 2021, 143, 12244–12252. [Google Scholar] [CrossRef]
- Esser, B.; Wössner, J.S.; Hermann, M. Conjugated Nanohoops with Dibenzo[a,e]pentalenes as Nonalternant and Antiaromatic π-Systems. Synlett 2022, 33, 737–753. [Google Scholar] [CrossRef]
- Wössner, J.S.; Kohn, J.; Wassy, D.; Hermann, M.; Grimme, S.; Esser, B. Increased Antiaromaticity through Pentalene Connection in [n]Cyclo-1,5-dibenzopentalenes. Org. Lett. 2022, 24, 983–988. [Google Scholar] [CrossRef] [PubMed]
- Sprachmann, J.; Wachsmuth, T.; Bhosale, M.; Burmeister, D.; Smales, G.J.; Schmidt, M.; Kochovski, Z.; Grabicki, N.; Wessling, R.; List-Kratochvil, E.J.W.; et al. Antiaromatic Covalent Organic Frameworks Based on Dibenzopentalenes. J. Am. Chem. Soc. 2023, 145, 2840–2851. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Wang, D.; Wu, X. Molecular Design of Two-Dimensional Antiaromatic Covalent Organic Frameworks for Solar-Driven Overall Water Splitting. J. Phys. Chem. C 2024, 128, 18759–18766. [Google Scholar] [CrossRef]
- Saito, M.; Nakamura, M.; Tajima, T. New Reactions of a Dibenzo[a,e]pentalene. Chem. Eur. J. 2008, 14, 6062–6068. [Google Scholar] [CrossRef]
- Xu, F.; Peng, L.; Orita, A.; Otera, J. Dihalo-Substituted Dibenzopentalenes: Their Practical Synthesis and Transformation to Dibenzopentalene Derivatives. Org. Lett. 2012, 14, 3970–3973. [Google Scholar] [CrossRef]
- Xu, F.; Peng, L.; Wakamatsu, K.; Orita, A.; Otera, J. Nucleophilic Substitution in 16π-Antiaromatic System: Synthesis of Heteroatom-substituted Dibenzopentalenes. Chem. Lett. 2014, 43, 1548–1550. [Google Scholar] [CrossRef]
- Hein, S.J.; Arslan, H.; Keresztes, I.; Dichtel, W.R. Rapid Synthesis of Crowded Aromatic Architectures from Silyl Acetylenes. Org. Lett. 2014, 16, 4416–4419. [Google Scholar] [CrossRef]
- Kuwabara, T.; Ishimura, K.; Sasamori, T.; Tokitoh, N.; Saito, M. Facile Synthesis of Dibenzopentalene Dianions and Their Application as New π-Extended Ligands. Chem. Eur. J. 2014, 20, 7571–7575. [Google Scholar] [CrossRef]
- Schwartz, L.M.; Ingersoll, H.G., Jr.; Hornig, J.F. Photoconductivity in p-diiodobenzene. Mol. Cryst. 1967, 2, 379–384. [Google Scholar] [CrossRef]
- Ellman, B.; Nene, S.; Semyonov, A.N.; Twieg, R.J. High Mobility, Low Dispersion Hole Transport in 1,4-Diiodobenzene. Adv. Mater. 2006, 18, 2284–2288. [Google Scholar] [CrossRef]
- Sánchez-Carrera, R.S.; Coropceanu, V.; Kim, E.-G.; Brédas, J.-L. Charge-Transport Properties of the 1,4-Diiodobenzene Crystal: A Quantum-Mechanical Study. Chem. Mater. 2008, 20, 5832–5838. [Google Scholar] [CrossRef]
- Kawase, T.; Konishi, A.; Hirao, Y.; Matsumoto, K.; Kurata, H.; Kubo, T. An Extremely Simple Dibenzopentalene Synthesis from 2-Bromo-1-ethynylbenzenes Using Nickel(0) Complexes: Construction of Its Derivatives with Various Functionalities. Chem. Eur. J. 2009, 15, 2653–2661. [Google Scholar] [CrossRef] [PubMed]
- Levi, Z.U.; Tilley, T.D. Versatile Synthesis of Pentalene Derivatives via the Pd-Catalyzed Homocoupling of Haloenynes. J. Am. Chem. Soc. 2009, 131, 2796–2797. [Google Scholar] [CrossRef]
- Mantina, M.; Chamberlin, A.C.; Valero, R.; Cramer, C.J.; Truhlar, D.G. Consistent van der Waals Radii for the Whole Main Group. J. Phys. Chem. A 2009, 113, 5806–5812. [Google Scholar] [CrossRef]
- Pedireddi, V.R.; Reddy, D.S.; Goud, B.S.; Craig, D.C.; Rae, A.D.; Desiraju, G.R. The nature of halogen⋯halogen interactions and the crystal structure of 1,3,5,7-tetraiodoadamantane. J. Chem. Soc. Perkin Trans. 2 1994, 11, 2353–2360. [Google Scholar] [CrossRef]
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef]
- Matsunaga, A.; Ogawa, Y.; Kumaki, D.; Tokito, S.; Katagiri, H. Control of Molecular Orientation in Organic Semiconductors Using Weak Iodine–Iodine Interactions. J. Phys. Chem. Lett. 2021, 12, 111–116. [Google Scholar] [CrossRef]
- Nishio, M. The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. Phys. Chem. Chem. Phys. 2011, 13, 13873–13900. [Google Scholar] [CrossRef]
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef]
Bonds 1 | Lengths | Bonds 1 | Lengths |
---|---|---|---|
C3−C4 | 1.484 (7) | C3−C6# | 1.408 (7) |
C4−C5 | 1.336 (7) | C5−C5# | 1.479 (9) |
C5−C6 | 1.482 (7) | C4−I1 | 2.704 (5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohara, N.; Ogiwara, C.; Kuwabara, T. 5,10-Diiododibenzo[a,e]pentalene. Molbank 2024, 2024, M1937. https://doi.org/10.3390/M1937
Ohara N, Ogiwara C, Kuwabara T. 5,10-Diiododibenzo[a,e]pentalene. Molbank. 2024; 2024(4):M1937. https://doi.org/10.3390/M1937
Chicago/Turabian StyleOhara, Natsumi, Chinatsu Ogiwara, and Takuya Kuwabara. 2024. "5,10-Diiododibenzo[a,e]pentalene" Molbank 2024, no. 4: M1937. https://doi.org/10.3390/M1937
APA StyleOhara, N., Ogiwara, C., & Kuwabara, T. (2024). 5,10-Diiododibenzo[a,e]pentalene. Molbank, 2024(4), M1937. https://doi.org/10.3390/M1937