Potential for Development of an Escherichia coli—Based Biosensor for Assessing Bioavailable Methionine: A Review
Abstract
:1. Introduction
2. Microbial Biosensors
3. E. coli as a Biosensor
4. E. coli as a Biosensor for Amino Acid Bioavailability
5. Biosynthesis of Methionine in E. coli
6. Bacterial Transport of Methionine
7. Genetic Strategies for Construction of E. Coli Mutants for Methionine Bioassays
7.1. General Strategies
7.2. Generating specific E. coli Methionine Auxotrophs
8. Detection Modes for Methionine Microbial Biosensors
8.1. Optical Density
8.2. β-galactosidase
8.3. Luminescence
8.4. Fluorescence
9. Conclusions
Acknowledgments
References
- Schwab, C.G. Rumen-protected amino acids for dairy cattle: Progress towards determining lysine and methionine requirements. Anim. Feed Sci. Technol 1996, 59, 87–101. [Google Scholar]
- Boisen, S.; Hvelplund, T.; Weisbjerg, M.R. Ideal amino acid profiles as a basis for feed protein evaluation. Livest Prod. Sci 2000, 64, 239–251. [Google Scholar]
- Webel, D.M.; Baker, D.H. Cystine is the first limiting amino acid for utilization of endogenous amino acids in chicks fed a protein-free diet. Nutr. Res 1999, 19, 569–577. [Google Scholar]
- Bunchasak, C. Role of dietary methionine in poultry production. J. Poult. Sci 2009, 46, 169–179. [Google Scholar]
- Brosnan, J.T.; Brosnan, M.E. The sulfur-containing amino acids: an overview. J. Nutr 2006, 136, 1636S–1640. [Google Scholar]
- Kalbande, V.H.; Ravikanth, K.; Maini, S.; Rekhe, D.S. Methionine supplementation options in poultry. Intern. J. Poult. Sci 2009, 8, 588–591. [Google Scholar]
- Dilger, R.N.; Kobler, C.; Weckbecker, C.; Hoehler, D.; Baker, D.H. 2-Keto-4-(Methylthio) butyric acid (keto analog of methionine) is a safe and efficacious precursor of l-methionine in chicks. J. Nutr 2007, 137, 1868–1873. [Google Scholar]
- Daenner, E.; Bessei, W. Influence of supplementation with liquid DL-methionine hydroxy analogue-free acid (alimet) or DL-methionine on performance of broilers. J. Appl. Poult. Res 2003, 12, 101–105. [Google Scholar]
- Kim, W.K.; Froelich, C.A., Jr.; Patterson, P.H.; Ricke, S.C. The potential to reduce poultry nitrogen emissions with dietary methionine or methionine analogues supplementation. World Poult. Sci. J 2006, 62, 338–353. [Google Scholar]
- Klasing, K.C.; Austic, R.E. Nutritional diseases. In Diseases of Poultry; Saif, Y.M., Ed.; Iowa State Press: Ames, IA, USA, 2003; p. 1027. [Google Scholar]
- Baker, D.H. Comparative species utilization and toxicity of sulfur amino acids. J. Nutr 2006, 136, 1670S–1675. [Google Scholar]
- Pesti, G.M.; Benevenga, N.J.; Harper, A.E.; Sunde, M.L. The effects of high dietary protein and nitrogen levels on the preformed methyl group requirement and methionine-induced growth depression in chicks. Poult. Sci 1981, 60, 425–432. [Google Scholar]
- Skoog, D.A.; Holler, E.F.; Nieman, T. A. Principles of Instrumental Analysis; Saunder College Publishing: Ft. Worth, TX, USA, 1998. [Google Scholar]
- Nielson, S.S. Food analysis; Aspen Production: Gaithersburg, MD, USA, 1998. [Google Scholar]
- Parsons, C.M.; Castanon, F.; Han, Y. Protein and amino acid quality of meat and bone meal. Poult. Sci 1997, 76, 361–368. [Google Scholar]
- D’Mello, J.P.F. Response of growing poultry to amino acids. In Amino Acids in Animal Nutrition; D’Mello, J.P.F., Ed.; CABI Publishing: Wallingford, CT, USA, 2003; p. 237. [Google Scholar]
- Cork, L.C.; Clarkson, T.B.; Jacoby, R.O.; Gaertner, D.J.; Leary, S.L.; Linn, J.M.; Pakes, S.P.; Ringler, D.H.; Strandberg, J.D.; Swindle, M.M. The costs of animal research: origins and options. Science 1997, 276, 758–759. [Google Scholar]
- Froelich, C.A.; Ricke, S.C. Rapid bacterial-based bioassays for quantifying methionine bioavailability in animal feeds: a review. J. Rapid Meth. Autom. Microbiol 2005, 13, 1–10. [Google Scholar]
- Chalova, V.I.; Kim, W.K.; Woodward, C.L.; Ricke, S.C. Quantification of total and bioavailable lysine in feed protein sources by a whole-cell green fluorescent protein growth-based Escherichia coli biosensor. Appl. Microbiol. Biotechnol 2007, 76, 91–99. [Google Scholar]
- D’Souza, S.F. Microbial biosensors. Bios. Bioelectr 2001, 16, 337–353. [Google Scholar]
- Lei, Y.; Chen, W.; Mulchandani, A. Microbial biosensors. Anal. Chim. Acta 2006, 568, 200–210. [Google Scholar]
- Mello, L.D.; Kubota, L.T. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chem 2002, 77, 237–256. [Google Scholar]
- Odaci, D.; Timur, S.; Telefoncua, A. A microbial biosensor based on bacterial cells immobilized on chitosan matrix. Bioelectrochemistry 2009, 75, 77–82. [Google Scholar]
- Couper, J. Application and Construction of Microbial Biosensors in Chemical Forensics, Dissertation,; Victoria University of Wellington: Wellington, New Zealand, 2008.
- Mulchandani, P.; Chen, W.; Mulchandani, A. Microbial biosensor for direct determination of nitrophenyl-substituted organophosphate nerve agents using genetically engineered Moraxella sp. Anal. Chim. Acta 2006, 568, 217–221. [Google Scholar]
- Kumar, J.; Jha, S.K.; D’Souza, S.F. Optical microbial biosensor for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbed on glass fiber filters as disposable biocomponent. Biosen. Bioel 2006, 21, 2105–2100. [Google Scholar]
- Tecon, R.; van der Meer, J.R. Bacterial biosensors for measuring availability of environmental pollutants. Sensors 2008, 8, 4062–4080. [Google Scholar]
- Tkáč, J.; Gemeiner, P.; Švitel, J.; Benikovský, T.; Šturdík, E.; Vala, V.; Petruš, L.; Hrabárová, E. Determination of total sugars in lignocellulose hydrolysate by a mediated Gluconobacter oxydans biosensor. Anal. Chim. Acta 2000, 420, 1–7. [Google Scholar]
- Rotariu, L.; Bala, C.; Magearu, V. New potentiometric microbial biosensor for ethanol determination in alcoholic beverages. Anal. Chim. Acta 2004, 513, 119–123. [Google Scholar]
- Luong, J.H.T.; Mulchandani, A.; Groom, C.A. The development of an amperometric microbial biosensor using Acetobacter pasteurianus for lactic acid. J. Biotechnol 1989, 10, 241–252. [Google Scholar]
- Buglass, A.J.; Garnham, S.C. A novel method for the determination of lactic acid. Comparison of lactic acid content of English and North European wines. Am. J. Enol. Vitic 1991, 42, 63–66. [Google Scholar]
- Riedel, K. Microbial biosensors based on oxygen electrodes. In Enzyme and Microbial Biosensors: Techniques and Protocols; Mulchandani, A., Rogers, K.R., Eds.; Humanae Press: Totowa, NJ, USA, 1998; p. 199. [Google Scholar]
- Simonian, A.L.; Rainina, E.I.; Fitzpatrick, P.F.; Wild, J.R. A tryptophan-2-monooxygenase based amperometric biosensor for L-tryptophan determination: use of a competitive inhibitor as a tool for selectivity increase. Bios. Bioel 1997, 12, 363–371. [Google Scholar]
- Ingraham, J.L.; Maaløe, O.; Neidhardt, F.C. Growth of the Bacterial Cell; Sinauer Associates, Inc: Sunderland, MA, USA, 1983. [Google Scholar]
- Blattner, F.R. The complete genome sequence of Escherichia coli K-12. Science 1997, 277, 1453–1462. [Google Scholar]
- Ptitsyn, L.R.; Horneck, G.; Komova, O.; Kozubek, S.; Krasavin, E.A.; Bonev, M.; Rettberg, P. A biosensor for environmental genotoxin screening based on an SOS lux assay in recombinant Escherichia coli cells. Appl. Environ. Microbiol 1997, 63, 4377–4384. [Google Scholar]
- Fiorentino, G.; Ronca, R.; Bartolucci, S. A novel E. coli biosensor for detecting aromatic aldehydes based on a responsive inducible archaeal promoter fused to the green fluorescent protein. Appl. Microbiol. Biotechnol 2009, 82, 67–77. [Google Scholar]
- Prest, A.G.; Winson, M.K.; Hammond, J.R.M.; Stewart, G.S.A.B. The construction and application of a lux-based nitrate biosensor. Lett. Appl. Microbiol 1997, 24, 355–360. [Google Scholar]
- Willardson, B.M.; Wilkins, J.F.; Rand, T.A.; Schupp, J.M.; Hill, K.K.; Keim, P.; Jackson, P.J. Development and testing of a bacterial biosensor for toluene-based environmental contaminants. Appl. Environ. Microbiol 1998, 64, 1006–1012. [Google Scholar]
- Stocker, J.; Balluch, D.; Gsell, M.; Harms, H.; Feliciano, J.; Daunert, S.; Malik, K.A.; van der Meer, J.R. Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ. Sci. Technol 2003, 37, 4743–4750. [Google Scholar]
- Chakraborty, T.; Babu, P.G.; Alam, A.; Chaudhari, A. GFP expressing bacterial biosensor to measure lead contamination in aquatic environment. Curr. Sci 2008, 94, 800–805. [Google Scholar]
- Eshkenazi, I.; Maltz, E.; Zion, B.; Rishpon, J. A three-cascaded-enzymes biosensor to determine lactose concentration in raw milk. J. Dairy Sci 2000, 83, 1939–1945. [Google Scholar]
- Held, M.; Schuhmann, W.; Jahreisc, K.; Schmidt, H. Microbial biosensor array with transport mutants of Escherichia coli K12 for the simultaneous determination of mono-and disaccharides. Biosen. Bioel 2002, 17, 1089–1094. [Google Scholar]
- Krapf, G.; Bode, W. A microbiological assay based on ampicillin-induced lysis of Escherichia coli auxotrophs. Zbl. Bakt. Hyg., I Abt. Orig. C 1980, 1, 314–319. [Google Scholar]
- Hitchins, A.D.; McDonough, F.E.; Wells, P.A. The use of Escherichia coli mutants to measure the bioavailability of essential amino acids in foods. Plant Foods Hum. Nutr 1989, 39, 109–120. [Google Scholar]
- Erickson, A.M.; Diaz, I.B.Z.; Kwon, Y.M.; Ricke, S.C. A bioluminescent Escherichia coli auxotroph for use in an in vitro lysine availability assay. J. Microbiol. Meth 2000, 40, 207–212. [Google Scholar]
- Chalova, V.I.; Sirsat, S.A.; O’Bryan, C.A.; Crandall, P.; Ricke, S.C. Escherichia coli, an intestinal microorganism, as a biosensor for quantification of amino acid bioavailability. Sensors 2009, 9, 7038–7057. [Google Scholar]
- Erickson, A.M.; Li, X.; Woodward, C.L.; Ricke, S.C. Optimisation of enzyme treatment for the degradation of feed proteins for an Escherichia coli auxotroph lysine availability assay. J. Sci. Food Agric 1999, 79, 1929–1935. [Google Scholar]
- Zabala-Díaz, I.B.; Carreon, F.O.C.; Ellis, W.C.; Ricke, S.C. Assessment of an Escherichia coli methionine auxotroph growth assay for quantifying crystalline methionine supplemented in poultry feeds. J. Rapid Methods Auto. Micro 2004, 12, 155–167. [Google Scholar]
- Zabala-Díaz, I.B.; Froelich, C.A.; Ricke, S.C. Adaptation of a methionine auxotroph Escherichia coli growth assay to microtiter plates for quantitating methionine. J. Rapid Methods Auto. Micro 2003, 10, 217–229. [Google Scholar]
- Adelberg, E.A.; Mandel, M.; Chein, C.C.G. Optimal conditions for mutagenesis by N-methyl-N’-nitro-N-nitrosoguanidine in Escherichia coli K12. Biochem. Biophys. Res. Commun 1965, 18, 788–795. [Google Scholar]
- Snyder, L.; Champness, W. Molecular Genetics of Bacterial; ASM Press: Washington, DC, USA, 1997. [Google Scholar]
- Kim, C.S.; Wood, T.K. Creating auxotrophic mutants in Methylophilus methylotrophus AS1 by combining electroporation and chemical mutagenesis. Appl. Microbiol. Biotechnol 1997, 48, 105–108. [Google Scholar]
- Wright, B.E.; Minnick, M.F. Reversion rates in a leuB auxotroph of Escherichia coli K-12 correlate with ppGpp levels during exponential growth. Microbiology 1997, 143, 847–854. [Google Scholar]
- Mulligan, J.T.; Margolin, W.; Krueger, J.H.; Walker, G.C. Mutations affecting regulation of methionine biosynthetic genes isolated by use of met-lac fusions. J. Bacteriol 1982, 151, 609–619. [Google Scholar]
- Froelich, C.A.; Zabala-Díaz, I.B.; Ricke, S.C. Potential rapid bioassay for Alimet® using a methionine Escherichia coli auxotroph. J. Rapid Methods Auto. Micro 2002, 10, 161–172. [Google Scholar]
- Shoveller, A.K.; Moehn, S.; Rademacher, M.; Htoo, J.K.; Ball, R.O. Methionine-hydroxy analogue was found to be significantly less bioavailable compared to DL-methionine for protein deposition in growing pigs. Animal 2009, 77, 427–439. [Google Scholar]
- Feng, Z.; Qiao, S.; Ma, Y.; Wang, X.; Li, X.; Thacker, P.A. Efficacy of methionine hydroxy analog and DL-methionine as methionine sources for growing pigs. J. Anim. Veter. Adv 2006, 5, 135–142. [Google Scholar]
- Michaeli, S.; Mevarech, M.; Ron, E.Z. Regulatory region of the metA gene of Escherichia coli K-12. J. Bacteriol 1984, 160, 1158–1162. [Google Scholar]
- Ahmed, A. Mechanism of repression of methionine biosynthesis in Escherichia coli. Mol. Gen. Genet 1973, 123, 299–324. [Google Scholar]
- Keseler, I.M.; Bonavides-Martinez, C.; Collado-Vides, J.; Gama-Castro, S.; Gunsalus, R.P.; Johnson, D.A.; Krummenacker, M.; Nolan, L.M.; Paley, S.; Paulsen, I.T.; Peralta-Gil, M.; Santos-Zavaleta, A.; Shearer, A.G.; Karp, P. D. EcoCyc: A comprehensive view of Escherichia coli biology. Nucl. Acids Res 2009, 37, D464–470. [Google Scholar]
- Karp, P.D.; Paley, S.; Romero, P. The pathway tools software. Bioinformatics 2002, 18, S1–S8. [Google Scholar]
- Arifuzzaman, M.; et al. Large-scale identification of protein–protein interaction of Escherichia coli K-12. Genome Res 2006, 16, 686–691. [Google Scholar]
- Aitken, S.M.; Kim, D.H.; Kirsch, J.F. Escherichia coli cystathionine γ-synthase does not obey ping-pong kinetics. Novel continuous assays for the elimination and substitution reactions. Biochemistry 2003, 42, 11297–11306. [Google Scholar]
- Awano, N.; Wada, M.; Kohdoh, A.; Oikawa, T.; Takagi, H.; Nakamori, S. Effect of cysteine desulfhydrase gene disruption on L-cysteine overproduction in Escherichia coli. Appl. Microbiol. Biotechnol 2003, 62, 239–243. [Google Scholar]
- Banerjee, R.V.; Johnston, N.L.; Sobeski, J.K.; Datta, Prasanta Matthew; Rowena, G. Cloning and sequence analysis of the Escherichia coli metH gene encoding cobalamin-dependent methionine synthase and isolation of a tryptic fragment containing the cobalamin-binding domain. J. Biol. Chem 1989, 264, 13888–13895. [Google Scholar]
- Daniels, D.L.; Plunkett, G.I.; Burland, V.; Blattner, F.R. Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. Science 1992, 257, 771-8–778. [Google Scholar]
- Thanbichler, M.; Neuhierl, B.; Bock, A. S-methylmethionine metabolism in Escherichia coli. J. Bacteriol 1999, 181, 662–665. [Google Scholar]
- Saint-Girons, I.; Duchange, N.; Zakin, M.M.; Park, I.; Margarita, D.; Ferrara, P.; Cohen, G.N. Nucleotide sequence of metF, the E. coli structural gene for 5-10 methylene tetrahydrofolate reductase and of its control region. Nucl. Acids Res 1983, 11, 6723–6732. [Google Scholar]
- LaMonte, B.L.; Hughes, J.A. In vivo hydrolysis of S-adenosylmethionine induces the met regulon of Escherichia coli. Microbiology 2006, 152, 1451–1459. [Google Scholar]
- Maxon, M.E.; Wigboldus, J.; Brot, N.; Weissbach, H. Structure-function studies on Escherichia coli MetR protein, a putative prokaryotic leucine zipper protein. PNAS 1990, 87, 7076–7079. [Google Scholar]
- Davidson, B.E.; Girons, I.S. The Escherichia coli regulatory protein MetJ binds to a tandemly repeated 8bp palindrome. Mol. Microbiol 1989, 3, 1639–1648. [Google Scholar]
- Urbanowski, M.L.; Stauffer, L.T.; Plamann, L.S.; Stauffer, G.V. A new methionine locus, metR, that encodes a trans-acting protein required for activation of metE and metH in Escherichia coli and Salmonella typhimurium. J. Bacteriol 1987, 169, 1391–1397. [Google Scholar]
- Shoeman, R.; Redfield, B.; Coleman, T.; Brot, N.; Weissbach, H.; Greene, R.C.; Smith, A.A.; Saint-Girons, I.; Zakin, M.M.; Cohen, G.N. Regulation of the methionine regulon in Escherichia coli. BioEssays 1985, 3, 210–213. [Google Scholar]
- Cai, X.; Jakubowski, H.; Redfield, B.; Zaleski, B.; Brot, N.; Weissbach, H. Role of the metF and metJ genes on the vitamin B12 regulation of methionine gene expression: involvement of N5-methyltetrahydrofolic acid. Biochem. Biophys. Res. Commun 1992, 182, 651–658. [Google Scholar]
- Hunter, J.S.; Greene, R.C.; Su, C.H. Genetic characterization of the metK locus in Escherichia coli K-12. J. Bacteriol 1975, 122, 1144–1152. [Google Scholar]
- Maxon, M.E.; Redfield, B.; Cai, X.Y.; Shoeman, R.; Fujita, K.; Fisher, W.; Stauffer, G.; Weissbach, H.; Brot, N. Regulation of methionine synthesis in Escherichia coli: effect of the MetR protein on the expression of the metE and metR genes. PNAS 1989, 86, 85–89. [Google Scholar]
- Cai, X.Y.; Maxon, M.E.; Redfield, B.; Glass, R.; Brot, N.; Weissbach, H. Methionine synthesis in Escherichia coli: effect of the MetR protein on metE and metH expression. PNAS 1989, 86, 4407–4411. [Google Scholar]
- Biran, D.; Gur, E.; Gollan, L.; Ron, E.Z. Control of methionine biosynthesis in Escherichia coli by proteolysis. Mol. Microbiol 2000, 37, 1436–1443. [Google Scholar]
- Born, T.L.; Blanchard, J.S. Enzyme-catalyzed acylation of homoserine: Mechanistic characterization of the Escherichia coli metA-encoded homoserine transsuccinylase. Biochemistry 1999, 38, 14416–14423. [Google Scholar]
- Ron, EZ.; Alajem, S.; Biran, D.; Grossman, N. Adaptation of Escherichia coli to elevated temperatures: the metA gene product is a heat shock protein. Antonie Van Leeuwenhoek 1990, 58, 169–174. [Google Scholar]
- Mordukhova, E.A.; Lee, H.; Pan, J. Improved thermostability and acetic acid tolerance of Escherichia coli via directed evolution of homoserine O-succinyltransferase. Appl. Environ. Microbiol 2008, 74, 7660–7668. [Google Scholar]
- Biran, D.; Brot, N.; Weissbach, H.; Ron, E.Z. Heat shock-dependent transcriptional activation of the metA gene of Escherichia coli. J. Bacteriol 1995, 177, 1374–1379. [Google Scholar]
- Wu, W.F.; Urbanowski, M.L.; Stauffer, G.V. Role of the MetR regulatory system in vitamin B12-mediated repression of the Salmonella typhimurium metE gene. J. Bacteriol 1992, 174, 4833–4837. [Google Scholar]
- González, J.C.; Peariso, K.; Penner-Hahn, J.E.; Matthews, R.G. Cobalamin-independent methionine synthase from Escherichia coli: A zinc metalloenzyme. Biochemistry 1996, 35, 12228–12234. [Google Scholar]
- Kadner, R.J. Regulation of methionine transport activity in Escherichia coli. J. Bacteriol 1975, 122, 110–119. [Google Scholar]
- Merlin, C.; Gardiner, G.; Durand, S.; Masters, M. The Escherichia coli metD locus encodes an ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ). J. Bacteriol 2002, 184, 5513–5517. [Google Scholar]
- Kadner, R.J. Transport and utilization of D-methionine and other methionine sources in Escherichia coli. J. Bacteriol 1977, 129, 207–216. [Google Scholar]
- Kadner, R.J.; Winkler, H.H. Energy coupling for methionine transport in Escherichia coli. J. Bacteriol 1975, 123, 985–991. [Google Scholar]
- Gál, J.; Szvetnik, A.; Róbert Schnell, R.; Kálmán, M. The metD D-methionine transporter locus of Escherichia coli is an ABC transporter gene cluster. J. Bacteriol 2002, 184, 4930–4932. [Google Scholar]
- Kadner, R.J. Transport systems for L-methionine in Escherichia coli. J. Bacteriol 1974, 117, 232–241. [Google Scholar]
- de Lorenzo, V.; Timmis, K.N. Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Meth. Enzymol 1994, 235, 386–405. [Google Scholar]
- McAdam, R.A.; Weisbrod, T.R.; Martin, J.; Scuderi, J.D.; Brown, A.M.; Cirillo, J.D.B.; Jacobs, J.W.R. In vivo growth characteristics of leucine and methionine auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis. Infect Immun 1995, 63, 1004–1012. [Google Scholar]
- Engel, P.; Wright, M.S. Auxotrophs produced by transposon mutagenesis in Streptomyces tendae ATCC 31160. Lett. Appl. Microbiol 1991, 13, 51–54. [Google Scholar]
- Kwon, Y.M.; Ricke, S.C. Efficient amplification of multiple transposon-flanking sequences. J. Microbiol. Meth 2000, 41, 195–199. [Google Scholar]
- Kwon, Y.M.; Kubena, L.F.; Nisbet, D.J.; Ricke, S.C. Functional screening of bacterial genome for virulence genes by transposon footprinting. Methods Enzymol 2002, 358, 141–152. [Google Scholar]
- Lee, S.; Jeon, B.; Bardarov, S.; Chen, M.; Morris, S.L.; Jacobs, W.R., Jr. Protection elicited by two glutamine auxotrophs of Mycobacterium tuberculosis and in vivo growth phenotypes of the four unique glutamine synthetase mutants in a murine model. Infect. Immun 2006, 74, 6491–6495. [Google Scholar]
- Bauby, H.; Saint Girons, I.; Picardeau, M. Construction and complementation of the first auxotrophic mutant in the spirochaete Leptospira meyeri. Microbiology 2003, 149, 689–693. [Google Scholar]
- Li, X.; Ricke, S.C. Generation of an Escherichia coli lysA targeted deletion mutant by double cross-over recombination for potential use in a bacterial growth-based lysine assay. Lett. Appl. Microbiol 2003, 37, 458–462. [Google Scholar]
- Stragier, P.; Borne, F.; Richaud, F.; Richaud, C.; Patte, J.C. Regulatory pattern of the Escherichia coli lysA gene: expression of chromosomal lysA-lacZ fusions. J. Bacteriol 1983, 156, 1198–1203. [Google Scholar]
- Greene, R.C.; Smith, A.A. Insertion mutagenesis of the metJBLF gene cluster of Escherichia coli K-12: evidence for an metBL operon. J. Bacteriol 1984, 159, 767–769. [Google Scholar]
- Blanco, J.; Coque, J.J.R.; Martin, J.F. The folate branch of the methionine biosynthesis pathway in Streptomyces lividans: Disruption of the 5,10-methylenetetrahydrofolate reductase gene leads to methionine auxotrophy. J. Bacteriol 1998, 180, 1586–1591. [Google Scholar]
- Kuhn, J.; Somerville, R.L. Mutant strains of Escherichia coli K12 that use D-amino acids. PNAS 1966, 68, 2484–2487. [Google Scholar]
- Cooper, A.J.L. Biochemistry of sulfur-containing amino acids. Annu. Rev. Biochem 1983, 52, 187–222. [Google Scholar]
- Cooper, S. Utilization of D-methionine by Escherichia coli. J. Bacteriol 1966, 92, 328–332. [Google Scholar]
- Kadaba, N.S.; Kaiser, J.T.; Johnson, E.; Lee, A.; Rees, D.C. The high-affinity E. coli methionine ABC transporter: Structure and allosteric regulation. Science 2008, 321, 250–253. [Google Scholar]
- Ripp, S.A.; Sayler, G.S. In Environmental assessment: bioreporter systems. In Molecular Microbial Ecology; Osborn, A.M., Smith, C.S., Eds.; Taylor & Francis Group: New York, NY, USA, 2005; p. 321. [Google Scholar]
- Tuffnell, J.M.; Payne, J.W. A colorimetric enzyme assay using Escherichia coli to determine nutritionally available lysine in biological materials. J. Appl. Bact 1985, 58, 333–341. [Google Scholar]
- Griffiths, M.W. Bioluminescence and the food industry. J. Rapid Meth. Auto. Microbiol 1995, 4, 65–75. [Google Scholar]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Kluwer Academic/Plenum Publishers: New York, NY, USA, 1999. [Google Scholar]
- Kavanagh, F. Analytical Microbiology; Academic Press: New York, NY, USA, 1963. [Google Scholar]
- Erickson, A.M.; Zabala-Díaz, I.B.; Ricke, S.C. Antibiotic amendment for suppression of indigenous microflora in feed sources for an Escherichia coli auxotroph lysine assay. J. Appl. Microbiol 1999, 87, 125–130. [Google Scholar]
- Froelich, C.A.; Zabala-Díaz, I.B.; Ricke, S.C. Methionine auxotroph Escherichia coli growth assay kinetics in antibiotic and antifungal amended selective media. J. Environ. Sci. Health 2002, B37, 485–492. [Google Scholar]
- Miller, J.H. Experiments in Molecular Genetics; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1972. [Google Scholar]
- Lin, E.C.C. Dissimilatory pathways for sugars, polyols, and carboxylates. In Escherichia coli and Salmonella: Cellular and Molecular Biology; Neidhardt, F.C., Curtiss, R., III, Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., Reznikoff, W.S., Riley, M., Schaechter, M., Umbarger, H.E., Eds.; ASM Press: Washington, DC, USA, 1996; Volume 1, p. 307. [Google Scholar]
- Baldwin, T.O.; Devine, J.H.; Heckel, R.C.; Lin, J.W.; Shadel, G.S. The complete nucleotide sequence of the lux regulon of Vibrio fischeri and the luxABN region of Photobacterium legiognathi and the mechanism of control of bacterial bioluminescence. J. Biolumin. Chemilum 1989, 4, 326–341. [Google Scholar]
- Rodriguez, J.F.; Rodriguez, D.; Rodriguez, J.R.; McGowan, E.B.; Esteban, M. Expression of the firefly luciferase gene in vaccinia virus: a highly sensitive gene marker to follow virus dissemination in tissues of infected animals. PNAS 1988, 85, 1667–1671. [Google Scholar]
- Baker, J.M.; Griffiths, M.W.; Collins-Thompson, D.L. Bacterial bioluminescence: application in food microbiology. J. Food Prot 1992, 55, 62–70. [Google Scholar]
- Hill, P.J.; Stewart, G.S.A.B. Use of lux genes in applied biochemistry. J. Biolumin. Chemilumin 1994, 9, 211–215. [Google Scholar]
- Froelich, C.A.; Zabala-Díaz, I.B.; Ricke, S.C. Construction and growth kinetics of a bioluminescent methionine auxotroph Escherichia coli strain for potential use in a methionine bioassay. J. Rapid Methods Auto. Micro 2002, 10, 69–82. [Google Scholar]
- Robinson, K.R.; Keating, T.J.; Cork, R.J. Intensive techniques for measuring [Ca2+]i changes using a photomultiplier tube. Meth. Cell Biol 1994, 40, 287–303. [Google Scholar]
- Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem 1998, 67, 509–544. [Google Scholar]
- Valdivia, R.H.; Falkow, S. Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol. Microbiol 1996, 22, 367–378. [Google Scholar]
- Hack, N.J.; BiHups, B.; Gutherie, P.B.; Rogers, J.H.; Muir, E.M.; Parks, T.N.; Kater, S.B. Green Fluorescent protein as a quantitative tool. J. Neuroscience Meth 2000, 95, 177–184. [Google Scholar]
- Shimomura, O.; Johnson, F.H.; Saiga, Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the Luminous Hydromedusan, Aequorea. J. Cell. Comp. Physiol 1962, 59, 223–239. [Google Scholar]
- Burlage, R.S. Emerging technologies: bioreporters, biosensors, and microprobes. In Manual of Environmental Microbiology; Hurst, C.J., Knudsen, G.R., McInerny, M.J., Stetzenbach, L.D., Walter, M.V., Eds.; ASM Press: Washington, DC, 1997; p. 115. [Google Scholar]
- Froelich, J.C.A.; Zabala Díaz, I.B.; Chalova, V.I.; Kim, W.; Ricke, S.C. Quantifying methionine with a green fluorescent Escherichia coli methionine auxotroph. J. Rapid Meth. Auto. Microbiol 2005, 13, 193–203. [Google Scholar]
- Billinton, N.; Knight, A.W. Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal. Biochem 2001, 291, 175–197. [Google Scholar]
- Heim, R.; Tsien, R.Y. Engineering green fluorescent protein for improved brightness, longer wavelengths, and fluorescence resonance transfer. Current Biol 1996, 6, 178–182. [Google Scholar]
- Crameri, A.; Whitehorn, E.A.; Tate, E.; Stemmer, W.P.C. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotech 1996, 14, 315–319. [Google Scholar]
- Patterson, G.H.; Knobel, S.M.; Sharif, W.D.; Kain, S.R.; Piston, D.W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J 1997, 73, 2782–2790. [Google Scholar]
- Chalova, V.; Woodward, C.L.; Ricke, S.C. Application of an Escherichia coli green fluorescent protein—based biosensor under nonsterile conditions and autofluorescence background. Lett. Appl. Microbiol 2006, 42, 265–270. [Google Scholar]
- Andersen, J.B.; Sternberg, C.; Poulsen, L.K.; Bjørn, S.P.; Givskov, M.; Molin, S. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol 1998, 64, 2240–2246. [Google Scholar]
Gene | Product | Reaction/Function | Reference |
---|---|---|---|
Methionine biosynthesis | |||
metA | homoserine O-transsuccinylase | L-homoserine + succinyl-CoA <==> O-succinyl-L-homoserine + coenzyme A | [63] |
metB | Cystathionine ã-synthetase | L-cysteine + O-succinyl-L-homoserine <==> succinate + L-cystathionine + H+ | [64] |
metC | cystathionase | L-cystathionine + H2O <==> pyruvate + ammonia + L-homocysteine + H+ | [65] |
metH | Cobalamin-dependent tetrahydropteroylglutamate methyltransferase | L-homocysteine + 5-methyltetrahydrofolate <==> L-methionine + tetrahydrofolate | [66] |
metE | Cobalamin-independent tetrahydropteroyltriglutamate methyltransferase | L-homocysteine + 5-methyltetrahydropteroyltri-L-glutamate <=> L-methionine + tetrahydro-pteroyltri-L-glutamate | [67] |
yagD | homocysteine methyltransferase | L-homocysteine + S-adenosyl-L-methionine <==> L-methionine + S-adenosyl-L-homocysteine + H+ | [68] |
metK | methionine adenosyltransferase | Catalyzes the formation of the sulfonium compound S-adenosylmethionine from methionine | [70] |
Methionine biosynthesis regulation | |||
metR | DNA-binding transcriptional activator, homocysteine-binding | Transactivate metA, metE, and metH | [71] |
metJ | S-adenosylmethionine transcriptional repressor | Represses transcription from associated promoter | [72] |
Detection Systems | Characteristics | Reference |
---|---|---|
Optical Density (OD) |
| [111] |
â-galactosidase |
| [108] |
Luminescence |
| [109] |
Fluorescence |
| [110] |
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chalova, V.I.; Froelich, C.A., Jr.; Ricke, S.C. Potential for Development of an Escherichia coli—Based Biosensor for Assessing Bioavailable Methionine: A Review. Sensors 2010, 10, 3562-3584. https://doi.org/10.3390/s100403562
Chalova VI, Froelich CA Jr., Ricke SC. Potential for Development of an Escherichia coli—Based Biosensor for Assessing Bioavailable Methionine: A Review. Sensors. 2010; 10(4):3562-3584. https://doi.org/10.3390/s100403562
Chicago/Turabian StyleChalova, Vesela I., Clifford A. Froelich, Jr., and Steven C. Ricke. 2010. "Potential for Development of an Escherichia coli—Based Biosensor for Assessing Bioavailable Methionine: A Review" Sensors 10, no. 4: 3562-3584. https://doi.org/10.3390/s100403562
APA StyleChalova, V. I., Froelich, C. A., Jr., & Ricke, S. C. (2010). Potential for Development of an Escherichia coli—Based Biosensor for Assessing Bioavailable Methionine: A Review. Sensors, 10(4), 3562-3584. https://doi.org/10.3390/s100403562