Novel Microwave-Assisted Synthesis of Poly(D,L-lactide): The Influence of Monomer/Initiator Molar Ratio on the Product Properties
Abstract
:1. Introduction
- – Re-crystallization of lactide monomer in order to eliminate possible impurities;
- – Drying of the monomer and ampoules for polymerization, because lactide hydrolyzes in the presence of even traces of moisture;
- – Filling of ampoules with the monomer mixture and the initiator, and sealing under extreme vacuum;
- – Polymerization process at high temperature, usually from 100 to 130 °C, sometimes even up to 280 °C, for a duration of 20 to 30 hours, sometimes over 50 hours;
- – Precipitation of the obtained polymer from the solution by means of a non-solvent to eliminate the residual monomer and initiator;
- – Drying under vacuum.
2. Experimental Section
2.1. Materials
2.2. Microwave-Assisted Synthesis of PLLA
2.3. Poly(D,L-lactide) Microsphere Preparation
2.4. Characterization of Obtained Polymers and Microspheres
3. Results and Discussion
4. Conclusions
Acknowledgments
References
- Gilding, D.K.; Reed, A.M. Biodegradable polymers for use in surgery-polyglicolic/poly(lactic acid) homo-and copolymers. Polymer 1979, 20, 1459–1464. [Google Scholar]
- Tomihata, K.; Suzuki, M.; Oka, T.; Ikada, Y. A new resorbable monofilament suture. Polymer Degrad. Stability 1998, 59, 13–18. [Google Scholar]
- Leenslag, J.W.; Pennings, A.J. High-strength poly(L-Lactide) fibers by a dry-spinning hot-drawing Process. Polymer 1987, 28, 1695–1702. [Google Scholar]
- Mäkelä, P.; Pohjonen, T.; Törmälä, P.; Waris, T.; Ashammakhi, N. Strength retention properties of self-reinforced poly L-lactide (SR-PLLA) sutures compared with polyglyconate (MaxonR) and polydioxanone (PDS) sutures. An in vitro study. Biomaterials 2002, 23, 2587–2592. [Google Scholar]
- Channuan, W.; Siripitayananon, J.; Molloy, R.; Mitchell, G.R. Defining the physical structure and properties in novel monofilaments with potential for use as absorbable surgical sutures based on a lactide containing block terpolymer. Polymer 2008, 49, 4433–4445. [Google Scholar]
- Penning, J.P.; Dijkstra, H.; Pennings, A.J. Preparation and properties of absorbable fibres from L-lactide copolymers. Polymer 1993, 34, 942–951. [Google Scholar]
- Leenslag, W.J.; Pennings, A.J.; Bos, R.M.; Rozema, F.R.; Boering, G. Resorbable materials of poly(L-lactide): VII In vivo and in vitro degradation. Biomaterials 1987, 8, 311–314. [Google Scholar]
- Winet, H.; Bao, J.Y. Fibroblast growth factor-2 alters the effect of eroding polylactide-polyglycolide on osteogenesis in the bone chamber. J. Biomed. Mater. Res 1998, 40, 567–576. [Google Scholar]
- Lunt, J. Large-scale production, properties, and commercial applications of polylactic acid polymers. Polym. Degrad. Stab 1998, 59, 145–152. [Google Scholar]
- Sodergard, A.; Stolt, M. Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci 2002, 27, 1123–1163. [Google Scholar]
- Drumright, R.E.; Gruber, P.R.; Henton, D.E. Polylactic acid technology. Adv. Mater 2000, 12, 1841–1846. [Google Scholar]
- Herrmann, J.; Bodmeier, R. The effect of particle microstructure on the somatostatin release from poly(lactide) microspheres prepared by a W/O/W solvent evaporation method. J. Control. Release 1995, 36, 63–71. [Google Scholar]
- Miyajima, M.; Koshika, A.; Okada, J.; Ikeda, M. Effect of polymer/basic drug interactions on the two-stage diffusion-controlled release from a poly(L-lactic acid) matrix. J. Control. Release 1999, 61, 295–304. [Google Scholar]
- Aso, Y.; Yoshioka, S.; Po, A.L.W.; Terao, T. Effect of temperature on mechanisms of drug release and matrix degradation of poly(D,L-lactide) microspheres. J. Control. Release 1994, 31, 33–39. [Google Scholar]
- Yoshioka, S.; Aso, Y.; Kojima, S. Drug release from poly(D,L-lactide) microspheres controlled by γ-irradiation. J. Control. Release 1995, 37, 263–267. [Google Scholar]
- Pradhan, R.S.; Vasavada, R.C. Formulation and in vitro release study on poly (D,L-lactide) microspheres containing hydrophilic compounds: glycine homopeptides. J. Control. Release 1994, 30, 143–154. [Google Scholar]
- Izumikawa, S.; Yoshioka, S.; Aso, Y.; Takeda, Y. Preparation of poly(L-lactide) microspheres of different crystalline morphology and effect of crystalline morphology on drug release rate. J. Control. Release 1991, 15, 133–140. [Google Scholar]
- Zhang, X.; Wyss, U.P.; Pichora, D.; Goosen, M.F.A. A mechanistic study of antibiotic release from biodegradable poly(D,L-lactide) cylinders. J. Control. Release 1994, 31, 129–144. [Google Scholar]
- Uhrich, K.; Cannizzaro, S.; Langer, R.; Shakesheff, K. Polymeric systems for controlled drug release. Chem. Rev 1999, 99, 3181–3198. [Google Scholar]
- Jacoby, M. Custom-made biomaterials. Chem. Eng. News 2001, 79, 30–35. [Google Scholar]
- Hyon, S.H.; Jamshidi, K.; Ikada, Y. Synthesis of polylactides with different molecular weights. Biomaterials 1997, 18, 1503–1508. [Google Scholar]
- Bendix, D. Chemical synthesis of poly(lactide) and its copolymers for medical applications. Polymer Degrad. Stability 1998, 59, 129–135. [Google Scholar]
- Leenslag, J.W.; Pennings, A.J. Synthesis of high-molecular-weight poly(L-lactide) initiated with tin 2-ethylhexanoate. Makromol. Chem 1987, 188, 1809–1814. [Google Scholar]
- Nijenhuis, A.J.; Grijpma, D.W.; Pennings, A.J. Lewis acid catalyzed polymerization of L-Lactide. Kinetics and mechanism of the bulk polymerization. Macromolecules 1992, 25, 6419–6424. [Google Scholar]
- Du, Y.J.; Lemstra, P.J.; Nijenhuis, A.J.; van Aert, H.A.M.; Bastiaansen, C. ABA type copolymers of lactide with poly(ethylene glycol). Kinetic, mechanistic and model studies. Macromolecules 1995, 28, 2124–2132. [Google Scholar]
- Schwach, G.; Coudane, J.; Engel, R.; Vert, M. More about the polymerization of lactides in the presence of stannous octoate. J. Polym. Sci. Part A: Polym. Chem 1997, 35, 3431–3440. [Google Scholar]
- Kricheldorf, H.R.; Kreiser-Saunders, I.; Boettcher, C. Polylactones: 31. Sn(II)octoate-initiated polymerization of L-lactide: a mechanistic study. Polymer 1995, 36, 1253–1259. [Google Scholar]
- Zhang, X.; McDonald, D.A.; Goosen, M.F.; McAuley, K.B. Mechanism of lactide polymerization in the presence of stannous octoate: The effect of hydroxy and carboxylic acid substances. J. Polym. Sci. Part A: Polym. Chem 1994, 32, 2965–2970. [Google Scholar]
- In’t Veld, P.J.A.; Velner, E.M.; van de Witte, P.; Hamhuis, J.; Dijkstra, P.J.; Feijen, J. Melt block copolymerization of ε-caprolactone and L-lactide. J. Polym. Sci. Part A: Polym. Chem 1997, 35, 219–226. [Google Scholar]
- Tong, Z.; Peng, W.; Zhiqian, Z.; Baoxiu, Z. Microwave irradiation copolymerization of superabsorbents from cornstarch and sodium acrylate. J. Appl. Polym. Sci 2005, 95, 264–269. [Google Scholar]
- Li, H.; Liao, L.; Liu, L. Kinetic investigation into the non-thermal microwave effect on the ring-opening polymerization of ε-caprolactone. Macromol. Rapid Commun 2007, 28, 411–416. [Google Scholar]
Sample | [M]/[I] | mM, g | mC, mg |
---|---|---|---|
MWS-1 MWS-2 MWS-3 | 1/1,000 | 5 | 14.05 |
MWS-4 MWS-5 MWS-6 | 1/5,000 | 5 | 2.81 |
MWS-7 MWS-8 MWS-9 | 1/10,000 | 5 | 1.41 |
Sample | Reaction time, min | [M]/[I] | Mn, g/mol | Mw, g/mol | Q | Yield (%) |
---|---|---|---|---|---|---|
MWS-1 | 10 | 1/1,000 | 35,820 | 108,033 | 3.016 | 68 |
MWS-2 | 20 | 1/1,000 | 40,982 | 127,126 | 3.102 | 81 |
MWS-3 | 30 | 1/1,000 | 59,483 | 203,729 | 3.425 | 89 |
MWS-4 | 10 | 1/5,000 | 26,724 | 78,461 | 2.936 | 81 |
MWS-5 | 20 | 1/5,000 | 42,470 | 131,359 | 3.093 | 83 |
MWS-6 | 30 | 1/5,000 | 102,321 | 287,111 | 2.806 | 83 |
MWS-7 | 10 | 1/10,000 | 32,627 | 79,479 | 2.436 | 87 |
MWS-8 | 20 | 1/10,000 | 62,075 | 164,498 | 2.650 | 89 |
MWS-9 | 30 | 1/10,000 | 112,542 | 309,940 | 2.754 | 95 |
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Nikolic, L.; Ristic, I.; Adnadjevic, B.; Nikolic, V.; Jovanovic, J.; Stankovic, M. Novel Microwave-Assisted Synthesis of Poly(D,L-lactide): The Influence of Monomer/Initiator Molar Ratio on the Product Properties. Sensors 2010, 10, 5063-5073. https://doi.org/10.3390/s100505063
Nikolic L, Ristic I, Adnadjevic B, Nikolic V, Jovanovic J, Stankovic M. Novel Microwave-Assisted Synthesis of Poly(D,L-lactide): The Influence of Monomer/Initiator Molar Ratio on the Product Properties. Sensors. 2010; 10(5):5063-5073. https://doi.org/10.3390/s100505063
Chicago/Turabian StyleNikolic, Ljubisa, Ivan Ristic, Borivoj Adnadjevic, Vesna Nikolic, Jelena Jovanovic, and Mihajlo Stankovic. 2010. "Novel Microwave-Assisted Synthesis of Poly(D,L-lactide): The Influence of Monomer/Initiator Molar Ratio on the Product Properties" Sensors 10, no. 5: 5063-5073. https://doi.org/10.3390/s100505063
APA StyleNikolic, L., Ristic, I., Adnadjevic, B., Nikolic, V., Jovanovic, J., & Stankovic, M. (2010). Novel Microwave-Assisted Synthesis of Poly(D,L-lactide): The Influence of Monomer/Initiator Molar Ratio on the Product Properties. Sensors, 10(5), 5063-5073. https://doi.org/10.3390/s100505063