Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts
Abstract
:1. Introduction
2. Supramolecular Approaches
3. Interfacial Techniques
4. Unusual Challenges
5. Future Perspectives
Acknowledgments
References
- Ariga, K; Nakanishi, T; Michinobu, T. Immobilization of biomaterials to nano-assembled films (self-assembled monolayers, Langmuir-Blodgett films, and layer-by-layer assemblies) and their related functions. J. Nanosci. Nanotechnol 2006, 6, 2278–2301. [Google Scholar]
- Ariga, K; Nakanishi, T; Hill, JP. Self-assembled microstructures of functional molecules. Curr. Opin. Colloid Interface Sci 2007, 12, 106–120. [Google Scholar]
- Nakanishi, T; Ariga, K; Michinobu, T; Yoshida, K; Takahashi, H; Teranishi, T; Möhwald, H; Kurth, DG. Flower-shaped supramolecular assemblies: hierarchical organization of a fullerene bearing long aliphatic chains. Small 2007, 3, 2019–2023. [Google Scholar]
- Ariga, K; Hill, JP; Lee, MV; Vinu, A; Charvet, R; Acharya, S. Challenges and breakthroughs in recent research on self-assembly. Sci. Technol. Adv. Mater 2008, 9, 014109. [Google Scholar]
- Nakanishi, T; Shen, Y; Wang, J; Li, H; Fernandes, P; Yoshida, K; Yagai, S; Takeuchi, M; Ariga, K; Kurth, DG; Möhwald, H. Superstructures and superhydrophobic property in hierarchical organized architectures of fullerenes bearing long alkyl tails. J. Mater. Chem 2010, 20, 1253–1260. [Google Scholar]
- Hembury, GA; Borovkov, VV; Inoue, Y. Chirality-sensing supramolecular systems. Chem. Rev 2008, 108, 1–73. [Google Scholar]
- Hutt, AJ. Drug chirality and its consequences. In Introduction to Drug Design and Action; Smith, HJ, Ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Claborn, K; Isborn, C; Kaminsky, W; Kahr, B. Optical rotation of achiral compounds. Angew. Chem. Int. Ed 2008, 47, 5706–5717. [Google Scholar]
- Allenmark, S. Induced circular dichroism by chiral molecular interaction. Chirality 2003, 15, 409–422. [Google Scholar]
- Parker, D. NMR Determination of enantiomeric purity. Chem. Rev 1991, 91, 1441–1457. [Google Scholar]
- Wenzel, TJ; Wilcox, JD. Chiral reagents for the determination of enantiomeric excess and absolute configuration using NMR spectroscopy. Chirality 2003, 15, 256–270. [Google Scholar]
- Okamoto, Y; Yashima, E. Polysaccharide derivatives for chromatographic separation of enantiomers. Angew. Chem. Int. Ed 1998, 37, 1020–1043. [Google Scholar]
- Ikai, T; Okamoto, Y. Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography. Chem. Rev 2009, 109, 6077–6101. [Google Scholar]
- Flack, HD; Bernardinelli, G. The use of X-ray crystallography to determine absolute configuration. Chirality 2008, 20, 681–690. [Google Scholar]
- Ariga, K; Vinu, A; Hill, JP; Mori, T. Coordination chemistry and supramolecular chemistry in mesoporous nanospace. Coord. Chem. Rev 2007, 251, 2562–2591. [Google Scholar]
- Nakanishi, T; Michinobu, T; Yoshida, K; Shirahata, N; Ariga, K; Möhwald, H; Kurth, DG. Nanocarbon superhydrophobic surfaces created from fullerene-based hierarchical supramolecular assemblies. Adv. Mater 2008, 20, 443–446. [Google Scholar]
- Nakanishi, T; Takahashi, H; Michinobu, T; Hill, JP; Teranishi, T; Ariga, K. Fine-tuning supramolecular assemblies of fullerenes bearing long alkyl chains. Thin Solid Films 2008, 516, 2401–2406. [Google Scholar]
- Okamoto, K; Chithra, P; Richards, GJ; Hill, JP; Ariga, K. Self-assembly of optical molecules with supramolecular concepts. Int. J. Mol. Sci 2009, 10, 1950–1966. [Google Scholar]
- Mandal, S; Lee, MV; Hill, JP; Vinu, A; Ariga, K. Recent developments in supramolecular approach for nanocomposites. J. Nanosci. Nanotechnol 2010, 10, 21–33. [Google Scholar]
- Ariga, K; Michinobu, T; Nakanishi, T; Hill, JP. Chiral recognition at the air-water interface. Curr. Opin. Colloid Interface Sci 2008, 13, 23–30. [Google Scholar]
- Watarai, H; Adachi, K. Measuring the optical chirality of molecular aggregates at liquid-liquid interfaces. Anal. Bioanal. Chem 2009, 395, 1033–1046. [Google Scholar]
- Pu, L. Fluorescence of organic molecules in chiral recognition. Chem. Rev 2004, 104, 1687–1716. [Google Scholar]
- Guo, Y-M; Oike, H; Aida, T. Chiroptical transcription of helical information through supramolecular harmonization with dynamic helices. J. Am. Chem. Soc 2004, 126, 716–717. [Google Scholar]
- Shoji, Y; Tashiro, K; Aida, T. Sensing of chiral fullerenes by a cyclic host with an asymmetrically distorted π-electronic component. J. Am. Chem. Soc 2006, 128, 10690–10691. [Google Scholar]
- Rekharsky, MV; Yamamura, H; Inoue, C; Kawai, M; Osaka, I; Arakawa, R; Shiba, K; Sato, A; Ko, YH; Selvapalam, N; Kim, K; Inoue, Y. Chiral Recognition in Cucurbituril Cavities. J. Am. Chem. Soc 2006, 128, 14871–14880. [Google Scholar]
- Li, X; Tanasova, M; Vasileiou, C; Borhan, B. Fluorinated porphyrin tweezer: A powerful reporter of absolute configuration for erythro and threo diols, amino alcohols, and diamines. J. Am. Chem. Soc 2008, 130, 1885–1893. [Google Scholar]
- Katoono, R; Kawai, H; Fujiwara, K; Suzuki, T. Dynamic molecular propeller: Supramolecular chirality sensing by enhanced chiroptical response through the transmission of point chirality to mobile helicity. J. Am. Chem. Soc 2009, 131, 16896–16904. [Google Scholar]
- Nakashima, T; Kobayashi, Y; Kawai, T. Optical activity and chiral memory of thiol-capped CdTe nanocrystals. J. Am. Chem. Soc 2009, 131, 10342–10343. [Google Scholar]
- Kubo, Y; Maeda, S; Tokita, S; Kubo, M. Colorimetric chiral recognition by a molecular sensor. Nature 1996, 382, 522–524. [Google Scholar]
- Zhao, J; Fyles, TM; James, TD. Chiral binol–bisboronic acid as fluorescence sensor for sugar acids. Angew. Chem. Int. Ed 2004, 43, 3461–3464. [Google Scholar]
- Mei, X; Wolf, C. Enantioselective sensing of chiral carboxylic acids. J. Am. Chem. Soc 2004, 126, 14736–14737. [Google Scholar]
- Shinoda, S; Okazaki, T; Player, TN; Misaki, H; Hori, K; Tsukube, H. Cholesterol-armed cyclens for helical metal complexes offering chiral self-aggregation and sensing of amino acid anions in aqueous solutions. J. Org. Chem 2005, 70, 1835–1843. [Google Scholar]
- Tsubaki, K; Nuruzzaman, M; Kusumoto, T; Hayashi, N; Bin-Gui, W; Fuji, K. Visual enantiomeric recognition using chiral phenolphthalein derivatives. Org. Lett 2001, 3, 4071–4073. [Google Scholar]
- Anslyn, EV. Supramolecular analytical chemistry. J. Org. Chem 2007, 72, 687–699. [Google Scholar]
- Inouye, M; Hashimoto, K; Isagawa, K. Nondestructive detection of acetylcholine in protic media: artificial-signaling acetylcholine receptors. J. Am. Chem. Soc 1994, 116, 5517–5518. [Google Scholar]
- Koh, KN; Araki, K; Ikeda, A; Otsuka, H; Shinkai, S. Reinvestigation of calixarene-based artificial-signaling acetylcholine receptors useful in neutral aqueous (water/methanol) solution. J. Am. Chem. Soc 1996, 118, 755–758. [Google Scholar]
- Wiskur, SL; Ait-Haddou, H; Lavigne, JJ; Anslyn, EV. Teaching old indicators new tricks. Acc. Chem. Res 2001, 34, 963–972. [Google Scholar]
- Wiskur, SL; Anslyn, EV. Using a synthetic receptor to create an optical-sensing ensemble for a class of analytes: A colorimetric assay for the aging of scotch. J. Am. Chem. Soc 2001, 123, 10109–10110. [Google Scholar]
- Piątek, AM; Bomble, YJ; Wiskur, SL; Anslyn, EV. Threshold detection using indicator-displacement assays: an application in the analysis of malate in Pinot Noir grapes. J. Am. Chem. Soc 2004, 126, 6072–6077. [Google Scholar]
- Zhu, L; Zhong, Z; Anslyn, EV. Guidelines in implementing enantioselective indicator-displacement assays for α-hydroxycarboxylates and diols. J. Am. Chem. Soc 2005, 127, 4260–4269. [Google Scholar]
- Folmer-Andersen, JF; Kitamura, M; Anslyn, EV. Pattern-based discrimination of enantiomeric and structurally similar amino acids: An optical mimic of the mammalian taste response. J. Am. Chem. Soc 2006, 128, 5652–5653. [Google Scholar]
- Guo, J; Wu, J; Siuzdak, G; Finn, MG. Measurement of enantiomeric excess by kinetic resolution and mass spectrometry. Angew. Chem. Int. Ed 1999, 38, 1755–1758. [Google Scholar]
- Tao, WA; Zhang, D; Nikolaev, EN; Cooks, RG. Copper (II)-assisted enantiomeric analysis of D-, L-amino acids using the kinetic method: Chiral recognition and quantification in the gas phase. J. Am. Chem. Soc 2000, 122, 10598–10609. [Google Scholar]
- Tao, WA; Cooks, RG. Parallel reactions for enantiomeric quantification of peptides by mass spectrometry. Angew. Chem. Int. Ed 2001, 40, 757–760. [Google Scholar]
- Yashima, E; Maeda, K. Chirality-responsive helical polymers. Macromolecules 2008, 41, 3–12. [Google Scholar]
- Yashima, E; Maeda, K; Sato, O. Switching of a macromolecular helicity for visual distinction of molecular recognition events. J. Am. Chem. Soc 2001, 123, 8159–8160. [Google Scholar]
- Nagai, K; Sakajiri, K; Maeda, K; Okoshi, K; Sato, T; Yashima, E. Hierarchical amplification of macromolecular helicity in a lyotropic liquid crystalline charged poly (phenylacetylene) by nonracemic dopants in water and its helical structure. Macromolecules 2006, 39, 5371–5380. [Google Scholar]
- Morimoto, M; Tamura, K; Nagai, K; Yashima, E. Chirality sensing of chiral pyrrolidines and piperazines with a liquid crystalline dynamic helical poly (phenylacetylene)s bearing ethyl phosphonate pendant groups. J. Polym. Sci. Part A Polym. Chem 2010, 48, 1383–1390. [Google Scholar]
- Onouchi, H; Hasegawa, T; Kashiwagi, D; Ishiguro, H; Maeda, K; Yashima, E. Chirality sensing of various biomolecules with helical poly (phenylacetylene) bearing acidic functional groups in water. J. Polym. Sci. Part A: Polym. Chem 2006, 44, 5039–5048. [Google Scholar]
- Goto, H; Furusho, Y; Yashima, E. Helicity induction on water-soluble oligoresorcinols in alkaline water and their application to chirality sensing. Chem Commun 2009, 1650–1652. [Google Scholar]
- Gong, L-Z; Hu, Q-S; Pu, L. Optically active dendrimers with a binaphthyl core and phenylene dendrons: Light harvesting and enantioselective fluorescent sensing. J. Org. Chem 2001, 66, 2358–2367. [Google Scholar]
- Ma, L; White, PS; Lin, W. Well-defined enantiopure 1,1′-binaphthyl-based oligomers: Synthesis, structure, photophysical properties, and chiral sensing. J. Org. Chem 2002, 67, 7577–7586. [Google Scholar]
- Ariga, K. Template-assisted nano-patterning: From the submicron scale to the submolecular level. J. Nanosci. Nanotechnol 2004, 4, 23–34. [Google Scholar]
- Yamazaki, T; Ohta, S; Sode, K. Operational condition of a molecular imprinting catalyst-based fructosyl-valine sensor. Electrochemistry 2008, 76, 590–593. [Google Scholar]
- Goto, H; Nimori, S. Liquid crystal electropolymerisation under magnetic field and resultant linear polarised electrochromism. J. Mater. Chem 2010, 20, 1891–1898. [Google Scholar]
- Hu, X; An, Q; Li, G; Tao, S; Liu, J. Imprinted photonic polymers for chiral recognition. Angew. Chem. Int. Ed 2006, 45, 8145–8148. [Google Scholar]
- Zhou, Y; Yu, B; Levon, K. Potentiometric sensing of chiral amino acids. Chem. Mater 2003, 15, 2774–2779. [Google Scholar]
- Fireman-Shoresh, S; Turyan, I; Mandler, D; Avnir, D; Marx, S. Chiral electrochemical recognition by very thin molecularly imprinted sol-gel films. Langmuir 2005, 21, 7842–7847. [Google Scholar]
- Sallacan, N; Zayats, M; Bourenko, T; Kharitonov, AB; Willner, I. Imprinting of nucleotide and monosaccharide recognition sites in acrylamidephenylboronic acid-acrylamide copolymer membranes associated with electronic transducers. Anal. Chem 2002, 74, 702–712. [Google Scholar]
- Raitman, OA; Chegel, VI; Kharitonov, AB; Zayats, M; Katz, E; Willner, I. Analysis of NAD(P)+ and NAD(P)H cofactors by means of imprinted polymers associated with Au surfaces: A surface plasmon resonance study. Anal. Chim. Acta 2004, 504, 101–111. [Google Scholar]
- Shirahata, N; Hozumi, A. Ultrathin poly (ethylene glycol) monolayers formed by chemical vapor deposition on silicon substrates. J. Nanosci. Nanotechnol 2006, 6, 1695–1700. [Google Scholar]
- Shirahata, N; Furumi, S; Masuda, Y; Hozumi, A; Sakka, Y. Fluorescence detection and imaging of amino-functionalized organic monolayer. Thin Solid Films 2008, 516, 2541–2546. [Google Scholar]
- Shirahata, N; Nakanishi, J; Echikawa, Y; Hozumi, A; Masuda, Y; Ito, S; Sakka, Y. Liquid manipulation lithography to fabricate a multifunctional microarray of organosilanes on an oxide surface under ambient conditions. Adv. Funct. Mater 2008, 18, 3049–3055. [Google Scholar]
- Hayakawa, R; Hiroshiba, N; Chikyow, T; Wakayama, Y. Impact of surface modification by addition of self-assembled monolayer for carrier transport of quaterrylene thin films. Thin Solid Films 2009, 518, 437–440. [Google Scholar]
- Acharya, S; Hill, JP; Ariga, K. Soft Langmuir-Blodgett technique for hard nanomaterials. Adv. Mater 2009, 21, 2959–2981. [Google Scholar]
- Acharya, S; Shundo, A; Hill, JP; Ariga, K. Langmuir films of unusual components. J. Nanosci. Nanotechnol 2009, 9, 3–18. [Google Scholar]
- Ariga, K; Hill, JP; Ji, Q. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys. Chem. Chem. Phys 2007, 9, 2319–2340. [Google Scholar]
- Ariga, K; Ji, Q; Hill, JP; Vinu, A. Coupling of soft technology (layer-by-layer assembly) with hard materials (mesoporous solids) to give hierarchic functional structures. Soft Matter 2009, 5, 3562–3571. [Google Scholar]
- Ariga, K; Hill, JP; Ji, Q. Biomaterials and biofunctionality in layered macromolecular assemblies. Macromol. Biosci 2008, 8, 981–990. [Google Scholar]
- Fujii, N; Fujimoto, K; Michinobu, T; Akada, M; Hill, JP; Shiratori, S; Ariga, K; Shigehara, K. The simplest layer-by-layer assembly structure: Best paired polymer electrolytes with one charge per main chain carbon atom for multilayered thin films. Macromolecules 2010, 43, 3947–3955. [Google Scholar]
- He, J; Sato, H; Umemura, Y; Yamagishi, A. Sensing of molecular chirality on an electrode modified with a clay-metal complex hybrid film. J. Phys. Chem. B 2005, 109, 4679–4683. [Google Scholar]
- Nakanishi, T; Matsunaga, M; Nagasaka, M; Asahi, T; Osaka, T. Enantioselectivity of redox reaction of DOPA at the gold electrode modified with a self-assembled monolayer of homocysteine. J. Am. Chem. Soc 2006, 128, 13322–13323. [Google Scholar]
- Matsunaga, M; Nakanishi, T; Asahi, T; Osaka, T. Highly enantioselective discrimination of amino acids using copper deposition on a gold electrode modified with homocysteine monolayer. Electrochem. Commun 2007, 9, 725–728. [Google Scholar]
- Switzer, JA; Kothari, HM; Poizot, P; Nakanishi, S; Bohannan, EW. Enantiospecific electrodeposition of a chiral catalyst. Nature 2003, 425, 490–493. [Google Scholar]
- Bodenhöfer, K; Hierlemann, A; Seemann, J; Gauglitz, G; Koppenhoefer, B; Göpel, W. Chiral discrimination using piezoelectric and optical gas sensors. Nature 1997, 387, 577–580. [Google Scholar]
- Ji, Q; Yoon, SB; Hill, JP; Vinu, A; Yu, JS; Ariga, K. Layer-by-layer films of dual-pore carbon capsules with designable selectivity of gas adsorption. J. Am. Chem. Soc 2009, 131, 4220–4221. [Google Scholar]
- Ariga, K; Vinu, A; Ji, Q; Ohmori, O; Hill, JP; Acharya, S; Koike, J; Shiratori, S. A layered mesoporous carbon sensor based on nanopore-filling cooperative adsorption in the liquid phase. Angew. Chem. Int. Ed 2008, 47, 7254–7257. [Google Scholar]
- Guo, W; Wang, J; Wang, C; He, JQ; He, XW; Cheng, JP. Design, synthesis, and enantiomeric recognition of dicyclodipeptide-bearing calix[4]arenes: a promising family for chiral gas sensor coatings. Tetrahedron Lett 2002, 43, 5665–5667. [Google Scholar]
- Paolesse, R; Monti, D; Monica, LL; Venanzi, M; Froiio, A; Nardis, S; Natale, CD; Martinelli, E; D’Amico, A. Preparation and self-assembly of chiral porphyrin diads on the gold electrodes of quartz crystal microbalances: A novel potential approach to the development of enantioselective chemical sensors. Chem. Eur. J 2002, 8, 2476–2483. [Google Scholar]
- Nakanishi, T; Yamakawa, N; Asahi, T; Shibata, N; Ohtani, B; Osaka, T. Chiral discrimination between thalidomide enantiomers using a solid surface with two-dimensional chirality. Chirality 2004, 16, S36–S39. [Google Scholar]
- Xu, C; Ng, SC; Chan, HSO. Self-assembly of perfunctionalized β-cyclodextrins on a quartz crystal microbalance for real-time chiral recognition. Langmuir 2008, 24, 9118–9124. [Google Scholar]
- Eun, H; Umezawa, Y. Quartz crystal microbalance for L-leucine sensing based on growth of L-leucine crystals immobilized on a monolayer of 11-mercaptoundecanoic acid. Anal. Chim. Acta 2000, 413, 223–227. [Google Scholar]
- Guo, H-S; Kim, J-M; Chang, S-M; Kim, W-S. Chiral recognition of mandelic acid by L-phenylalanine-modified sensor using quartz crystal microbalance. Biosens. Bioelectron 2009, 24, 2931–2934. [Google Scholar]
- Inagaki, S; Min, JZ; Toyo’oka, T. Prediction for the separation efficiency of a pair of enantiomers during chiral high-performance liquid chromatography using a quartz crystal microbalance. Anal. Chem 2008, 80, 1824–1828. [Google Scholar]
- Gabai, R; Sallacan, N; Chegel, V; Bourenko, T; Katz, E; Willner, I. Characterization of the swelling of acrylamidophenylboronic acid-acrylamide hydrogels upon interaction with glucose by Faradaic impedance spectroscopy, chronopotentiometry, quartz-crystal microbalance (QCM), and surface plasmon resonance (SPR) experiments. J. Phys. Chem. B 2001, 105, 8196–8202. [Google Scholar]
- Chen, H; Lee, J; Kim, S-H; Kim, J-H; Koh, K. Phenylalanine sensing based on surface plasmon resonance. J. Nanosci. Nanotechnol 2009, 9, 7199–7203. [Google Scholar]
- Lieberman, I; Shemer, G; Fried, T; Kosower, EM; Markovich, G. Plasmon-resonance-enhanced absorption and circular dichroism. Angew. Chem. Int. Ed 2008, 47, 4855–4857. [Google Scholar]
- Ha, J-M; Solovyov, A; Katz, A. Postsynthetic modification of gold nanoparticles with calix[4]arene enantiomers: Origin of chiral surface plasmon resonance. Langmuir 2009, 25, 153–158. [Google Scholar]
- Hiroshiba, N; Hayakawa, R; Petit, M; Chikyow, T; Matsuishi, K; Wakayama, Y. Structural analysis and transistor properties of hetero-molecular bilayers. Thin Solid Films 2009, 518, 441–443. [Google Scholar]
- Matsumoto, A; Sato, N; Sakata, T; Yoshida, R; Kataoka, K; Miyahara, Y. Chemical-to-electrical-signal transduction synchronized with smart gel volume phase transition. Adv. Mater 2009, 21, 4372–4378. [Google Scholar]
- Takami, S; Hayakawa, R; Wakayama, Y; Chikyow, T. Continuous hydrothermal synthesis of nickel oxide nanoplates and their use as nanoinks for p-type channel material in a bottom-gate field-effect transistor. Nanotechnology 2010, 21, 134009. [Google Scholar]
- Perrier, S; Ravelet, C; Guieu, V; Fize, J; Roy, B; Perigaud, C; Peyrin, E. Rationally designed aptamer-based fluorescence polarization sensor dedicated to the small target analysis. Biosens. Bioelectron 2010, 25, 1652–1657. [Google Scholar]
- Null, EL; Lu, Y. Rapid determination of enantiomeric ratio using fluorescent DNA or RNA aptamers. Analyst 2010, 135, 419–422. [Google Scholar]
- Torsi, L; Farinola, GM; Marinelli, F; Tanese, MC; Omar, OH; Valli, L; Babudri, F; Palmisano, F; Zambonin, PG; Naso, F. A sensitivity-enhanced field-effect chiral sensor. Nat. Mater 2008, 7, 412–417. [Google Scholar]
- Hofstetter, O; Hofstetter, H; Wilchek, M; Schurig, V; Green, BS. Chiral discrimination using an immunosensor. Nat. Biotechnol 1999, 17, 371–374. [Google Scholar]
- Tsourkas, A; Hofstetter, O; Hofstetter, H; Weissleder, R; Josephson, L. Magnetic relaxation switch immunosensors detect enantiomeric impurities. Angew. Chem. Int. Ed 2004, 43, 2395–2399. [Google Scholar]
- Su, WC; Zhang, WG; Zhang, S; Fan, J; Yin, X; Luo, ML; Ng, SC. A novel strategy for rapid real-time chiral discrimination of enantiomers using serum albumin functionalized QCM biosensor. Biosens. Bioelectron 2009, 25, 488–492. [Google Scholar]
- You, CC; Agasti, SS; Rotello, VM. Isomeric control of protein recognition with amino acid- and dipeptide-functionalized gold nanoparticles. Chem. Eur. J 2008, 14, 143–150. [Google Scholar]
- Arnell, R; Ferraz, N; Fornstedt, T. Analytical characterization of chiral drug-protein interactions: Comparison between the optical biosensor (surface plasmon resonance) assay and the HPLC perturbation method. Anal. Chem 2006, 78, 1682–1689. [Google Scholar]
- Hill, JP; Wakayama, Y; Ariga, K. How molecules accommodate a 2D crystal lattice mismatch: An unusual ‘mixed’ conformation of tetraphenylporphyrin. Phys. Chem. Chem. Phys 2006, 8, 5034–5037. [Google Scholar]
- Hill, JP; Wakayama, Y; Akada, M; Ariga, K. Two-dimensional molecular array of porphyrin derivatives with bright and dark spots as a model of two-digit molecular-dot memory. Synth. Met 2009, 159, 765–768. [Google Scholar]
- Lopinski, GP; Moffatt, DJ; Wayner, DDM; Wolkow, RA. Determination of the absolute chirality of individual adsorbed molecules using the scanning tunnelling microscope. Nature 1998, 392, 909–911. [Google Scholar]
- Yoshikawa, G; Lang, H-P; Akiyama, T; Aeschimann, L; Staufer, U; Vettiger, P; Aono, M; Sakurai, T; Gerber, C. Sub-ppm detection of vapors using piezoresistive microcantilever array sensors. Nanotechnology 2009, 20, 015501. [Google Scholar]
- Costa, PMFJ; Cachim, PB; Gautam, UK; Bando, Y; Golberg, D. The mechanical response of turbostratic carbon nanotubes filled with Ga-doped ZnS: I. Data processing for the extraction of the elastic modulus. Nanotechnology 2009, 20, 405706. [Google Scholar]
- Dutta, P; Tipple, CA; Lavrik, NV; Datskos, PG; Hofstetter, H; Hofstetter, O; Sepaniak, MJ. Enantioselective sensors based on antibody-mediated nanomechanics. Anal. Chem 2003, 75, 2342–2348. [Google Scholar]
- Yoshizawa, M; Tamura, M; Fujita, M. Chirality enrichment through the heterorecognition of enantiomers in an achiral coordination host. Angew. Chem. Int. Ed 2007, 46, 3874–3876. [Google Scholar]
- Shundo, A; Labuta, J; Hill, JP; Ishihara, S; Ariga, K. Nuclear magnetic resonance signaling of molecular chiral information using an achiral reagent. J. Am. Chem. Soc 2009, 131, 9494–9495. [Google Scholar]
- Ariga, K; Kunitake, T. Molecular recognition at air-water and related interfaces: Complementary hydrogen bonding and multisite interaction. Acc. Chem. Res 1998, 31, 371–378. [Google Scholar]
- Ariga, K; Hill, JP; Endo, H. Developments in molecular recognition and sensing at interfaces. Int. J. Mol. Sci 2007, 8, 864–883. [Google Scholar]
- Sakurai, M; Tamagawa, H; Inoue, Y; Ariga, K; Kunitake, T. Theoretical study of intermolecular interaction at the lipid-water interface. 1. Quantum chemical analysis using a reaction field theory. J. Phys. Chem. B 1997, 101, 4810–4816. [Google Scholar]
- Tamagawa, H; Sakurai, M; Inoue, Y; Ariga, K; Kunitake, T. Theoretical study of intermolecular interaction at the lipid-water interface. 2. Analysis based on the Poisson-Boltzmann equation. J. Phys. Chem. B 1997, 101, 4817–4825. [Google Scholar]
- Cha, X; Ariga, K; Onda, M; Kunitake, T. Molecular recognition of aqueous dipeptides by noncovalently aligned oligoglycine units at the air/water interface. J. Am. Chem. Soc 1995, 117, 11833–11838. [Google Scholar]
- Cha, X; Ariga, K; Kunitake, T. Molecular recognition of aqueous dipeptides at multiple hydrogen-bonding sites of mixed peptide monolayers. J. Am. Chem. Soc 1996, 118, 9545–9551. [Google Scholar]
- Ariga, K; Kamino, A; Cha, X; Kunitake, T. Multisite recognition of aqueous dipeptides by oligoglycine arrays mixed with guanidinium and other receptor units at the air-water interface. Langmuir 1999, 15, 3875–3885. [Google Scholar]
- Badis, M; Tomaszkiewicz, I; Joly, J-P; Rogalska, E. Enantiomeric recognition of amino acids by amphiphilic crown ethers in Langmuir monolayers. Langmuir 2004, 20, 6259–6267. [Google Scholar]
- Shahgaldian, P; Pieles, U; Hegner, M. Enantioselective recognition of phenylalanine by a chiral amphiphilic macrocycle at the air-water interface: A copper-mediated mechanism. Langmuir 2005, 21, 6503–6507. [Google Scholar]
- Huang, X; Li, C; Jiang, S; Wang, X; Zhang, B; Liu, M. Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid. J. Am. Chem. Soc 2004, 126, 1322–1323. [Google Scholar]
- Ariga, K; Nakanishi, T; Hill, JP. A paradigm shift in the field of molecular recognition at the air-water interface: From static to dynamic. Soft Matter 2006, 2, 465–477. [Google Scholar]
- Ariga, K; Nakanishi, T; Terasaka, Y; Kikuchi, J. Catching a molecule at the air-water interface: dynamic pore array for molecular recognition. J. Porous Mater 2006, 13, 427–430. [Google Scholar]
- Michinobu, T; Shinoda, S; Nakanishi, T; Hill, JP; Fujii, K; Player, TN; Tsukube, H; Ariga, K. Mechanical control of enantioselectivity of amino acid recognition by cholesterol-armed cyclen monolayer at the air-water interface. J. Am. Chem. Soc 2006, 128, 14478–14479. [Google Scholar]
- Ariga, K; Lee, MV; Mori, T; Yu, X-Y; Hill, JP. Two-dimensional nanoarchitectonics based on self-assembly. Adv. Colloid Interface Sci 2010, 154, 20–29. [Google Scholar]
- Pumera, M; Escarpa, A. Micro- and nanotechnology in electrochemical detection science. Talanta 2007, 74, 275–275. [Google Scholar]
- Fang, X; Bando, Y; Golberg, D. Recent progress in one-dimensional ZnS nanostructures: Syntheses and novel properties. J. Mater. Sci. Technol 2008, 24, 512–519. [Google Scholar]
- Fujita, D; Sagisaka, K. Active nanocharacterization of nanofunctional materials by scanning tunneling microscopy. Sci. Technol. Adv. Mater 2008, 9, 013003. [Google Scholar]
- Furuya, K. Nanofabrication by advanced electron microscopy using intense and focused beam. Sci. Technol. Adv. Mater 2008, 9, 014110. [Google Scholar]
- Waser, R; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater 2007, 6, 833–840. [Google Scholar]
- Hasegawa, T; Ohno, T; Terabe, K; Tsuruoka, T; Nakayama, T; Gimzewski, JK; Aono, M. Learning abilities achieved by a single solid-state atomic switch. Adv. Mater 2010, 22, 1831–1834. [Google Scholar]
- Okawa, Y; Takajo, D; Tsukamoto, S; Hasegawa, T; Aono, M. Atomic force microscopy and theoretical investigation of the lifted-up conformation of polydiacetylene on a graphite substrate. Soft Matter 2008, 4, 1041–1047. [Google Scholar]
- Nakaya, M; Kuwahara, Y; Aono, M; Nakayama, T. Reversibitity-controlled single molecular level chemical reaction in a C-60 monolayer via ionization induced by scanning transmission microscopy. Small 2008, 4, 538–541. [Google Scholar]
- Nakaya, M; Tsukamoto, S; Kuwahara, Y; Aono, M; Nakayama, T. Molecular scale control of unbound and bound C60 for topochemical ultradense data storage in an ultrathin C60 film. Adv. Mater 2010, 22, 1622–1625. [Google Scholar]
- Tarn, MD; Hirota, N; Iles, A; Pamme, N. On-chip diamagnetic repulsion in continuous flow. Sci. Technol. Adv. Mater 2009, 10, 014611. [Google Scholar]
- Pumera, M; Smid, B; Veltruska, K. Influence of nitric acid treatment of carbon nanotubes on their physico-chemical properties. J. Nanosci. Nanotechnol 2009, 9, 2671–2676. [Google Scholar]
- Tsuda, K; Sakka, Y. Simultaneous alignment and micropatterning of carbon nanotube using modulated magnetic field. Sci. Technol. Adv. Mater 2009, 10, 014603. [Google Scholar]
- Rodríguez-Manzo, JA; Wang, MS; Banhart, F; Bando, Y; Golberg, D. Multibranched junctions of carbon nanotubes via cobalt particles. Adv. Mater 2009, 21, 4477–4482. [Google Scholar]
- Wang, M; Golberg, D; Bando, Y. Interface dynamic behavior between a carbon nanotube and metal electrode. Adv. Mater 2010, 22, 93–98. [Google Scholar]
- Momota, H; Yokoi, H; Takamasu, T. Development of magnetically aligned single-walled carbon nanotubes-gelatin composite films. J. Nanosci. Nanotechnol 2010, 10, 3849–3853. [Google Scholar]
- Sun, Y; Hu, J; Chen, Z; Bando, Y; Golberg, D. Prospective important semiconducting nanotubes: synthesis, properties and applications. J. Mater. Chem 2009, 19, 7592–7605. [Google Scholar]
- Huang, Q; Bando, Y; Zhao, L; Zhi, C; Golberg, D. pH sensor based on boron nitride nanotubes. Nanotechnology 2009, 20, 415501. [Google Scholar]
- Huang, Y; Lin, J; Bando, Y; Tang, C; Zhi, C; Shi, Y; Takayama-Muromachi, E; Golberg, D. BN nanotubes coated with uniformly distributed Fe3O4 nanoparticles: novel magneto-operable nanocomposites. J. Mater. Chem 2010, 20, 1007–1011. [Google Scholar]
- Liu, B; Bando, Y; Wang, M; Golberg, D. Synthesis and in-situ TEM transport measurements of individual GaN nanowires and nanotubes. J. Nanosci. Nanotechnol 2010, 10, 3945–3951. [Google Scholar]
- Marani, D; D’Epifanio, A; Traversa, E; Miyayama, M; Licoccia, S. Titania nanosheets (TNS)/sulfonated poly ether ether ketone (SPEEK) nanocomposite proton exchange membranes for fuel cells. Chem. Mater 2010, 22, 1126–1133. [Google Scholar]
- Osada, M; Sasaki, T. Exfoliated oxide nanosheets: new solution to nanoelectronics. J. Mater. Chem 2009, 19, 2503–2511. [Google Scholar]
- Sathish, M; Miyazawa, K; Hill, JP; Ariga, K. Solvent Engineering for Shape-Shifter Pure Fullerene (C60). J. Am. Chem. Soc 2009, 131, 6372–6373. [Google Scholar]
- Huang, J; Ma, R; Ebina, Y; Fukuda, K; Takada, K; Sasaki, T. Layer-by-Layer assembly of TaO3 nanosheet/polycation composite nanostructures: Multilayer film, hollow sphere, and its photocatalytic activity for hydrogen evolution. Chem. Mater 2010, 22, 2582–2587. [Google Scholar]
- Ningthoujam, RS; Sudarsan, V; Vinu, A; Srinivasu, P; Ariga, K; Kulshreshtha, SK; Tyagi, AK. Luminescence properties of SnO2 nanoparticles dispersed in Eu3+ doped SiO2 matrix. J. Nanosci. Nanotechnol 2008, 8, 1489–1493. [Google Scholar]
- Ji, Q; Acharya, S; Hill, JP; Richards, GJ; Ariga, K. Multi-dimensional control of surfactant-guided assemblies of quantum gold particles. Adv. Mater 2008, 20, 4027–4032. [Google Scholar]
- Alam, S; Anand, C; Ariga, K; Mori, T; Vinu, A. Unusual magnetic properties of size-controlled iron oxide nanoparticles grown in a nanoporous matrix with tunable pores. Angew. Chem. Int. Ed 2009, 48, 7358–7361. [Google Scholar]
- Oishi, M; Nakamura, T; Jinji, Y; Matsuishi, K; Nagasaki, Y. Multi-stimuli-triggered release of charged dye from smart PEGylated nanogels containing gold nanoparticles to regulate fluorescence signals. J. Mater. Chem 2009, 19, 5909–5912. [Google Scholar]
- Srinivasan, R; Yogamalar, R; Vinu, A; Ariga, K; Bose, AC. Structural and optical characterization of samarium doped yttrium oxide nanoparticles. J. Nanosci. Nanotechnol 2009, 9, 6747–6752. [Google Scholar]
- Acharya, S; Gautam, UK; Sasaki, T; Bando, Y; Golan, Y; Ariga, K. Ultra narrow PbS nanorods with intense fluorescence. J. Am. Chem. Soc 2008, 130, 4594–4595. [Google Scholar]
- Acharya, S; Kundu, S; Hill, JP; Richards, GJ; Ariga, K. Nanorod-driven orientational control of liquid crystal for polarization-tailored electro-optic devices. Adv. Mater 2009, 21, 989–993. [Google Scholar]
- Acharya, S; Sarma, DD; Golan, Y; Sengupta, S; Ariga, K. Shape-dependent confinement in ultrasmall zero-, one-, and two-dimensional PbS nanostructures. J. Am. Chem. Soc 2009, 131, 11282–11283. [Google Scholar]
- Pradhan, N; Acharya, S; Ariga, K; Karan, NS; Sarma, DD; Wada, Y; Efrima, S; Golan, Y. Chemically programmed ultrahigh density two-dimensional semiconductor superlattice array. J. Am. Chem. Soc 2010, 132, 1212–1213. [Google Scholar]
- Shen, G; Chen, D; Bando, Y; Golberg, D. One-dimensional (1-D) nanoscale heterostructures. J. Mater. Sci. Technol 2008, 24, 541–549. [Google Scholar]
- Hu, J; Bando, Y; Golberg, D. Novel semiconducting nanowire heterostructures: synthesis, properties and applications. J. Mater. Chem 2009, 19, 330–343. [Google Scholar]
- Charvet, R; Acharya, S; Hill, JP; Akada, M; Liao, M; Seki, S; Honsho, Y; Saeki, A; Ariga, K. Block-copolymer-nanowires with nanosized domain segregation and high charge mobilities as stacked p/n heterojunction arrays for repeatable photocurrent switching. J. Am. Chem. Soc 2009, 131, 18030–18031. [Google Scholar]
- Miyazawa, K. Synthesis and properties of fullerene nanowhiskers and fullerene nanotubes. J. Nanosci. Nanotechnol 2009, 9, 41–50. [Google Scholar]
- Kizuka, T; Fujii, J; Miyazawa, K. Iron catalyzed synthesis of hollow carbon nanocapsules by resistive heating. Diamond Relat. Mater 2009, 18, 1253–1257. [Google Scholar]
- Ringor, CL; Miyazawa, K. Fabrication of solution grown C-60 fullerene nanotubes with tunable diameter. J. Nanosci. Nanotechnol 2009, 9, 6560–6564. [Google Scholar]
- Jin, H; Liu, Z; Ohsuna, T; Terasaki, O; Inoue, Y; Sakamoto, K; Nakanishi, T; Ariga, K; Che, S. Control of morphology and helicity of chiral mesoporous silica. Adv. Mater 2006, 18, 593–596. [Google Scholar]
- Ji, Q; Miyahara, M; Hill, JP; Acharya, S; Vinu, A; Yoon, SB; Yu, JS; Sakamoto, K; Ariga, K. Stimuli-free auto-modulated material release from mesoporous nanocompartment films. J. Am. Chem. Soc 2008, 130, 2376–2377. [Google Scholar]
- Ji, Q; Acharya, S; Hill, JP; Vinu, A; Yoon, SB; Yu, J-S; Sakamoto, K; Ariga, K. Hierarchic nanostructure for auto-modulation of material release: Mesoporous nanocompartment films. Adv. Funct. Mater 2009, 19, 1792–1799. [Google Scholar]
- Vinu, A; Miyahara, M; Mori, T; Ariga, K. Carbon nanocage: A large pore cage-type mesoporous carbon material as an adsorbent for biomolecules. J. Porous Mater 2006, 13, 379–383. [Google Scholar]
- Ariga, K; Vinu, A; Miyahara, M; Hill, JP; Mori, T. One-pot separation of tea components through selective adsorption on pore-engineered nanocarbon, carbon nanocage. J. Am. Chem. Soc 2007, 129, 11022–11023. [Google Scholar]
- Vinu, A; Hossian, KZ; Srinivasu, P; Miyahara, M; Anandan, S; Gokulakrishnan, N; Mori, T; Ariga, K; Balasubramanian, VV. Carboxy-mesoporous carbon and its excellent adsorption capability for proteins. J. Mater. Chem 2007, 17, 1819–1825. [Google Scholar]
- Vinu, A; Mori, T; Ariga, K. New families of mesoporous materials. Sci. Technol. Adv. Mater 2006, 7, 753–771. [Google Scholar]
- Vinu, A; Srinivasu, P; Sawant, DP; Mori, T; Ariga, K; Chang, JS; Jhung, SH; Balasubramanian, VV; Hwang, YK. Three-dimensional cage type mesoporous CN-based hybrid material with very high surface area and pore volume. Chem. Mater 2007, 19, 4367–4372. [Google Scholar]
- Srinivasu, P; Alam, S; Balasubramanian, VV; Velmathi, S; Sawant, DP; Böhlmann, W; Mirajkar, SP; Ariga, K; Halligudi, SB; Vinu, A. Novel three dimensional cubic Fm3m mesoporous aluminosilicates with tailored cage type pore structure and high aluminum content. Adv. Funct. Mater 2008, 18, 640–651. [Google Scholar]
- Vinu, A; Anandan, S; Anand, C; Srinivasu, P; Ariga, K; Mori, T. Fabrication of partially graphitic three-dimensional nitrogen-doped mesoporous carbon using polyaniline nanocomposite through nanotemplating method. Microporous Mesoporous Mater 2008, 109, 398–404. [Google Scholar]
- El-Safty, SA. Organic-inorganic hybrid mesoporous monoliths for selective discrimination and sensitive removal of toxic mercury ions. J. Mater. Chem 2009, 44, 6764–6774. [Google Scholar]
- Ariga, K; Ji, Q; Hill, JP; Vinu, A. Supramolecular materials from inorganic building blocks. J. Inorg. Organomet. Polym. Mater 2010, 20, 1–9. [Google Scholar]
- Ariga, K; Vinu, A; Miyahara, M. Recent progresses in bio-inorganic nanohybrids. Curr. Nanosci 2006, 2, 197–210. [Google Scholar]
- Vinu, A; Miyahara, M; Ariga, K. Assemblies of biomaterials in mesoporous media. J. Nanosci. Nanotechnol 2006, 6, 1510–1532. [Google Scholar]
- Ruiz-Hitzky, E; Darder, M; Aranda, P; Ariga, K. Advances in biomimetic and nanostructured biohybrid materials. Adv. Mater 2010, 22, 323–336. [Google Scholar]
- Vinu, A; Srinivasu, P; Takahashi, M; Mori, T; Balasubramanian, VV; Ariga, K. Controlling the textural parameters of mesoporous carbon materials. Microporous Mesoporous Mater 2007, 100, 20–26. [Google Scholar]
- Kuramochi, H; Tokizaki, T; Onuki, T; Yokoyama, H. Precise control of nanofabrication by atomic force microscopy. J. Nanosci. Nanotechnol 2010, 10, 4434–4439. [Google Scholar]
- Ogawa, K; Sawaguchi, T; Kajiwara, S. Atomic arrangement of interphase boundary between bainite and austenite in Fe-Si-C alloy. Mater. Trans 2010, 51, 455–462. [Google Scholar]
- Tadokoro, M; Tsumeda, S; Tsuhara, N; Nakayama, H; Miyazato, Y; Tamamitsu, K; Vinu, A; Ariga, K. Electric double-layer capacitance of carbon nanocages. J. Nanosci. Nanotechnol 2009, 9, 391–395. [Google Scholar]
- D'Souza, F; Subbaiyan, NK; Xie, Y; Hill, JP; Ariga, K; Ohkubo, K; Fukuzumi, S. Anion-complexation-induced stabilization of charge separation. J. Am. Chem. Soc 2009, 131, 16138–16146. [Google Scholar]
- de Oteyza, DG; Garcia-Lastra, JM; Corso, M; Doyle, BP; Floreano, L; Morgante, A; Wakayama, Y; Rubio, A; Ortega, JE. Customized electronic coupling in self-assembled donor-acceptor nanostructures. Adv. Funct. Mater 2009, 19, 3567–3573. [Google Scholar]
- Furumi, S; Sakka, Y. Circularly polarized laser emission induced by supramolecular chirality in cholesteric liquid crystals. J. Nanosci. Nanotechnol 2006, 6, 1819–1822. [Google Scholar]
- Pihosh, Y; Goto, M; Kasahara, A; Tosa, M. Implantation of organic matter through water onto solid substrates by a laser induced molecular jet. Thin Solid Films 2008, 516, 2507–2512. [Google Scholar]
- Furumi, S; Tamaoki, N. Glass-forming cholesteric liquid crystal oligomers for new tunable solid-state laser. Adv. Mater 2010, 22, 886–891. [Google Scholar]
- Ohtsuka, H. Structural control of Fe-based alloys through diffusional solid/solid phase transformations in a high magnetic field. Sci. Technol. Adv. Mater 2008, 9, 013004. [Google Scholar]
- Koyama, T. Phase-field modeling of microstructure evolutions in magnetic materials. Sci. Technol. Adv. Mater 2008, 9, 013006. [Google Scholar]
- Inomata, K; Ikeda, N; Tezuka, N; Goto, R; Sugimoto, S; Wojcik, M; Jedryka, E. Highly spin-polarized materials and devices for spintronics. Sci. Technol. Adv. Mater 2008, 9, 014101. [Google Scholar]
- Furuya, K. Nanofabrication by advanced electron microscopy using intense and focused beam. Sci. Technol. Adv. Mater 2008, 9, 014110. [Google Scholar]
- Balasubramanian, VV; Srinivasu, P; Anand, C; Pal, RR; Ariga, K; Velmathi, S; Alam, S; Vinu, A. Highly active three-dimensional cage type mesoporous aluminosilicates and their catalytic performances in the acetylation of aromatics. Microporous Mesoporous Mater 2008, 114, 303–311. [Google Scholar]
- Balasubramanian, VV; Anand, C; Pal, RR; Mori, T; Böhlmann, W; Ariga, K; Tyagi, AK; Vinu, A. Characterization and the catalytic applications of mesoporous AlSBA-1. Microporous Mesoporous Mater 2009, 121, 18–25. [Google Scholar]
- Wang, L; Wang, H; Nemoto, Y; Yamauchi, Y. Rapid and efficient synthesis of platinum nanodendrites with high surface area by chemical reduction with formic acid. Chem. Mater 2010, 22, 2835–2841. [Google Scholar]
© 2010 by the authors licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ariga, K.; Richards, G.J.; Ishihara, S.; Izawa, H.; Hill, J.P. Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts. Sensors 2010, 10, 6796-6820. https://doi.org/10.3390/s100706796
Ariga K, Richards GJ, Ishihara S, Izawa H, Hill JP. Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts. Sensors. 2010; 10(7):6796-6820. https://doi.org/10.3390/s100706796
Chicago/Turabian StyleAriga, Katsuhiko, Gary J. Richards, Shinsuke Ishihara, Hironori Izawa, and Jonathan P. Hill. 2010. "Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts" Sensors 10, no. 7: 6796-6820. https://doi.org/10.3390/s100706796
APA StyleAriga, K., Richards, G. J., Ishihara, S., Izawa, H., & Hill, J. P. (2010). Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts. Sensors, 10(7), 6796-6820. https://doi.org/10.3390/s100706796