A Network Access Control Framework for 6LoWPAN Networks
Abstract
:1. Introduction
2. Security on LoWPAN Networks
3. Related Technologies
3.1. 6LoWPAN
3.2. Lightweight Secure Neighbor Discovery for 6LoWPAN (LSEND)
3.3. IPv6 Routing Protocol for Low Power and Lossy Networks
3.4. Node Remote Reprogramming Mechanisms
3.4.1. Sensor Node Execution Environment
3.4.2. Protocols for Update Dissemination
3.4.3. Size Reduction Mechanisms
4. Network Access Control Security Framework
4.1. Nodes Requirements
4.2. Node Identification, Compliance and Data Security
4.3. Access Control Algorithm Description
5. Discussion
- Administrator authorization: a manual authorization was considered because it is very hard to define rules that can be applied to all network security requirements. For example, in a monitoring network installed in a nuclear power plant, if a new node tries to access the network, it will be most probably a malicious node since the network infrastructure remains unchanged for long time periods. Therefore, the administrator can approve the new nodes based on: hardware type, layer-two address and location. This approval method also protects the framework against DoS attacks, because only approved nodes will be evaluated. All nodes are identified by a cryptographic generated address, according to LSEND protocol.
- Security check compliance: several conditions can be considered as inputs to the agent used to assess the security compliance such as, for example, the installed software image and the security protocols in use. Note that multiple agents might be required if different operating systems or hardware platforms are used in the same network. The decision on which agent should be used on each device node is a challenge.
- Hardware and software image compliance: providing plug-and-play mechanism is not enough to guarantee that node is able to realize the desired functions. For example, a sensor node is unable to monitor the temperature if the module used to retrieve the temperature is missing. The same occurs with the hardware. Software image compliance also helps to protect against malicious code injection.
6. Conclusions and Future Work
Acknowledgments
References
- Kushalnagar, N.; Montenegro, G.; Schumacher, C. IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals, RFC 4919. 2007. Available online: http://www.ietf.org/rfc/rfc4919.txt (accessed on 27 August 2012).
- Oliveira, L.M.L.; Sousa, A.F.; Rodrigues, J.R. Routing and mobility approaches in IPv6 over LoWPAN mesh networks. Int. J. Commun. Syst. 2011, 24, 1445–1466. [Google Scholar]
- Gershenfeld, N.; Krikorian, R.; Cohen, D. The internet of things. Sci. Am. 2004, 4, 76–81. [Google Scholar]
- Hui, J.; Culler, D. Extending IP to low-power, wireless personal area networks. IEEE Internet Comput. 2008, 4, 37–45. [Google Scholar]
- Narten, T.; Nordmark, E.; Simpson, W.; Soliman, H. Neighbor Discovery for IP version 6 (IPv6), RFC 4861. 2007. Available online: http://www.ietf.org/rfc/rfc4861.txt (accessed on 27 August 2012).
- Shelby, Z.; Chakrabarti, S.; Nordmark, E. Neighbor Discovery Optimization for Low Power and Lossy Networks Draft−ietf−6lowpan−nd−21. 2012, unpublished work.
- Sarikaya, B.; Xia, F.; Zaverucha, G. Lightweight Secure Neighbor Discovery for Low-Power and Lossy Networks Draft-sarikaya-6lowpan-cgand-03. 2012, unpublished work.
- Yong, W.; Attebury, G.; Ramamurthy, B. A survey of security issues in wireless sensor networks. IEEE Commun. Surv. Tut. 2006, 8, 2–23. [Google Scholar]
- Oliveira, L.; Rodrigues, J.; Sousa, A.; Lloret, J. Denial of service mitigation approach for IPv6-enabled smart object networks. Concurr. Comp.-Pract. E. 2013, 25, 129–142. [Google Scholar]
- Du, X.; Chen, H. Security in wireless sensor networks. IEEE Wirel. Commun. 2008, 15, 60–66. [Google Scholar]
- Pelechrinis, K.; Iliofotou, M.; Krishnamurthy, V. Denial of service attacks in wireless networks: The Case of Jammers. IEEE Commun. Surv. Tut. 2011, 13, 245–257. [Google Scholar]
- Lopez, J.; Roman, E.; Alcaraz, C. Analysis of security threats, requirements, technologies and standards in wireless sensor network. Lect. Notes Comput. Sci. 2009, 5705, 289–338. [Google Scholar]
- Kavitha, T.; Sridharan, D. Security vulnerabilities in wireless sensor networks: A survey. J. Inf. Assur. Secur. 2010, 5, 31–44. [Google Scholar]
- Faye, Y.; Niang, I.; Noel, T. A survey of access control schemes in wireless sensor networks. Proc. World Acad. Sci. Eng. Tech. 2011, 59, 814–823. [Google Scholar]
- Sun, K.; Liu, A.; Xu, R.; Ning, P.; Maughan, D. Securing Network Access in Wireless Sensor Networks. WiSec '09 Proceedings of the Second ACM Conference on Wireless Network Security; ACM: New York, NY, USA, 2009. [Google Scholar]
- Shi, E.; Perrig, A. Designing secure sensor networks. IEEE Wirel. Commun. 2004, 11, 38–43. [Google Scholar]
- Ramen, R.; Lopez, J.; Gritzalis, S. Situation awareness mechanisms for wireless sensor networks. IEEE Comm. Mag. 2008, 46, 102–107. [Google Scholar]
- Sakerindr, P.; Ansari, N. Security Services in Group Communications over wireless infrastructure, mobile Ad Hoc and sensor networks. IEEE Wirel. Commun. 2007, 14, 8–20. [Google Scholar]
- Singh, S.K.; Singh, M.P.; Singhtise, D.K. A survey on network security and attack defense mechanism for wireless sensor networks. Int. J. Comput. Trends Tech. 2011, 5–6, 1–9. [Google Scholar]
- Khan, M.K.; Alghathbar, K. Cryptanalysis and security improvements of ‘two-factor user authentication in wireless sensor networks’. Sensors 2010, 10, 2450–2459. [Google Scholar]
- Xiao, Y.; Rayi, V.K.; Sun, B.; Du, X.; Hu, F.; Galloway, M. A survey of key management schemes in wireless sensor networks. Comput. Commun. 2007, 30, 2314–2341. [Google Scholar]
- Wood, A.; Fang, L.; Stankovic, J.; He, T. SIGF: a family of configurable, secure routing protocols for wireless sensor networks. SASN '06 Proceedings of the Fourth ACM Workshop on Security of Ad Hoc and Sensor Networks; ACM: New York, NY, USA, 2006; pp. 35–48. [Google Scholar]
- Alzaid, H.; Foo, E.; Gonzalez, N.J. Secure Data Aggregation in Wireless Sensor Network: A Survey. AISC '08 Proceedings of the Sixth Australasian Conference on Information Security; Brankovic, L., Miller, M., Eds.; Australian Computer Society, Inc.: Darlinghurst, Australia, 2008. Volume 81. pp. 93–105. [Google Scholar]
- Sun, K.; Ning, P.; Wang, C. Fault-tolerant cluster-wise clock synchronization for wireless sensor networks. IEEE Trans. Depend. Secure. 2005, 2, 177–189. [Google Scholar]
- Yong, W.; Ramamurthy, B.; Xue, Y.; Zou, X. A security Framework for Wireless Sensor Networks Utilizing a Unique Session Key. Proceedings of Broadband Communications, Networks and Systems, London, UK, 8–11 September 2008; pp. 487–494.
- Perrig, A.; Szewczyk, R.; Tygar, J.D.; Wen, V.; Culler, D. SPINS: Security protocols for sensor networks. Wirel. Netw. 2001, 8, 521–534. [Google Scholar]
- Zia, T.A.; Zomaya, A.Y. A lightweight security framework for wireless sensor networks. J. Wirel. Mobile Netw., Ubiquitous Comput. Dependable Appl. (JoWUA) 2011, 2, 53–73. [Google Scholar]
- Gura, N.; Patel, A.; Wander, A.; Eberle, H.; Chang-Shantz, S. Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs. Proceedings of CHES '2004 Workshop on Cryptographic Hardware and Embedded Systems-Lecture Notes in Computer Science; Springer-Verlag: Cambridge, MA, USA, 2004. [Google Scholar]
- Ortal, A.; Qi, H. Load balanced key establishment methodologies in wireless sensor networks. Int. J. Secur. Netw. 2006, 1, 158–166. [Google Scholar]
- Montenegro, G.; Kushalnagar, N.; Hui, J.; Culler, D. Transmission of IPv6 Packets over IEEE 802.15.4 Networks, RFC 4944. 2007. Available online: http://www.ietf.org/rfc/rfc4944.txt (accessed on 25 August 2012).
- Winter, T.; Thubert, P.; Brandt, A.; Hui, J.; Kelsey, R.; Levis, P.; Pister, K.; Struik, R.; Vasseur, JP.; Alexander, R. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks, RFC 6550. 2012. Available online: http://www.ietf.org/rfc/rfc6550.txt (accessed on 25 August 2012).
- Thomson, S.; Narten, T.; Jinmei, T. IPv6 Stateless Address Autoconfiguration, RFC 4862. 2007. Available online: http://www.ietf.org/rfc/rfc4862.txt (accessed on 25 August 2012).
- Hinden, R.; Deering, S. IP Version 6 Addressing Architecture, RFC 4291. 2006. Available online: http://www.ietf.org/rfc/rfc4291.txt (accessed on 25 August 2012).
- Arkko, J.; Kempf, J.; Sommerfeld, B.; Zill, B.; Nikander, P. SEcure Neighbor Discovery (SEND), RFC 3971. 2005. Available online: http://www.ietf.org/rfc/rfc3971.txt (accessed on 25 August 2012).
- Driessen, B.; Poschmann, A.; Paar, C. Comparison of Innovative Signature Algorithms for WSNs. WiSec '08 Proceedings of the 1st ACM Conference on Wireless Network Security; ACM: New York, NY, USA; pp. 30–35.
- Rongbo, Z.; Ya, M. Research on Key Management Scheme for WSN Based on ECC. In Information Engineering and Applications; Zhu, R., Ma, Y., Eds.; Springer: London, UK, 2012; Volume 153; pp. 219–216. [Google Scholar]
- Dohler, M.; Watteyne, T.; Winter, T.; Barthel, D. Routing Requirements for Urban Low-Power and Lossy Networks, RFC 5548. 2009. Available online: http://www.ietf.org/rfc/rfc5548.txt (accessed on 25 August 2012).
- Pister, K.; Thubert, P.; Dwars, S.; Phinney, T. Industrial Routing Requirements in Low-Power and Lossy Networks, RFC 5673. 2009. Available online: http://www.ietf.org/rfc/rfc5673.txt (accessed on 25 August 2012).
- Brandt, A.; Buron, J.; Porcu, G. Home Automation Routing Requirements in Low-Power and Lossy Networks, RFC 5826. 2010. Available online: http://www.ietf.org/rfc/rfc5826.txt (accessed on 25 August 2012).
- Martocci, J.; Mi, P.D.; Riou, N.; Vermeylen, W. Building Automation Routing Requirements in Low Power and Lossy Networks, RFC 5867. 2010. Available online: http://www.ietf.org/rfc/rfc5867.txt (accessed on 25 August 2012).
- Ko, K.; Dawson-Haggerty, S.; Hui, J.; Culler, D.; Levis, P.; Terzis, A. Connecting low-power and lossy networks to the Internet. IEEE Commun. Mag. 2011, 49, 96–101. [Google Scholar]
- Mottola, L.; Pietro, G. Programming wireless sensor networks: Fundamental concepts and state of the art. ACM Comput. Surv. 2011, 43, 1–51. [Google Scholar]
- Hui, J.; Culler, D. The Dynamic Behavior of a Data Dissemination Protocol for Network Programming at Scale. SenSys '04 Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems; ACM: New York, NY, USA, 2004; pp. 81–94. [Google Scholar]
- Brown, S.; Sreenan, J. Updating Software in Wireless Sensor Networks: A Survey; Tech. Rep. UCC-CS-2006-13-07; Department of Computer Science, University College Cork: Cork, Ireland, 2006. [Google Scholar]
- Levis, P.; Culler, D. Maté: A Tiny Virtual Machine for Sensor Networks. Proceedings of the 10th International Conference on Architectural Support for Programming Languages and Operating Systems, San Jose, CA, USA, 5–9 October 2002.
- Stann, F.; Heidemann, J. RMST: Reliable Data Transport in Sensor Networks. Proceedings of the First IEEE International Workshop on Sensor Network Protocols and Applications, Anchorage, AK, USA, 11 May 2003.
- Intanagonwiwat, C.; Govindan, R.; Estrin, D.; Heidemann, J.; Silva, F. Directed diffusion for wireless sensor networking. IEEE/ACM Trans. Netw. 2011, 11, 2–16. [Google Scholar]
- Hui, J.; Culler, D. The Dynamic Behavior of a Data Dissemination Protocol for network Programming at Scale. Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, Baltimore MD, USA, 3– 5 November 2004.
- Hyun, S.; Ning, P.; Liu, A.; Du, W. Seluge: Secure and DoS-Resistant Code Dissemination in Wireless Sensor Networks. Proceedings of the 7th International Conference on Information Processing in Sensor Networks, St. Louis, MO, USA, 22–24 April 2008.
- TinyOS Community. Deluge T2-TinyOS Documentation Wiki. 16 March 2010. Available online: http://docs.tinyos.net/tinywiki/index.php/Deluge_T2 (accessed on 1 September 2012).
- Reijers, N.; Langendoen, K. Efficient Code Distribution in Wireless Sensor Networks. WSNA '03 Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks and Applications; ACM: New York, NY, USA, 2003. [Google Scholar]
- Jeong, J. Incremental Network Programming for Wireless Sensors. Proceedings of 1st Annual IEEE Communications Society Conference on Sensor and Ad Hoc Networks and Communications (SECON 2004), Santa Clara, CA, USA, 4–7 October 2004.
- Koshy, J.; Pandey, R. Remote Incremental Linking for Energy-Efficient Reprogramming of Sensor Networks. Proceedings of the Second European Workshop on Wireless Sensor Networks, Istanbul, Turkey, 31 January–2 February 2005.
- Carman, D.; Kruus, S.; Matt, B. Constraints and Approaches for Distributed Sensor Network Security NAI Labs Technical Report #00-010. 2000.
List of Acronyms
6LN | 6LoWPAN Node |
6LR | 6LoWPAN Router |
6LBR | 6LoWPAN Border Router |
AES | Advanced encryption standard |
CGA | Cryptographically generated addresses |
DAD | Duplicate Address Detection |
DAG | Directed Acyclic Graph |
DAR | Duplicate Address Request |
DODAG | Destination Oriented DAG |
ECC | Elliptic curve cryptography |
LSEND | Lightweight Secure Neighbor Discovery for Low-power and Lossy |
MAC | Medium Access Control sub-layer protocol |
MTU | Maximum Transmission Unit |
NA | Neighbor advertisement |
NDP | Neighbor discovery protocol |
NS | Neighbor solicitation |
PHY | Physical layer protocol |
RA | Router advertisement |
RPL | IPv6 Routing Protocol for Low-power and lossy networks |
RS | Router solicitation |
SEND | Secure neighbor discovery protocol |
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Oliveira, L.M.L.; Rodrigues, J.J.P.C.; De Sousa, A.F.; Lloret, J. A Network Access Control Framework for 6LoWPAN Networks. Sensors 2013, 13, 1210-1230. https://doi.org/10.3390/s130101210
Oliveira LML, Rodrigues JJPC, De Sousa AF, Lloret J. A Network Access Control Framework for 6LoWPAN Networks. Sensors. 2013; 13(1):1210-1230. https://doi.org/10.3390/s130101210
Chicago/Turabian StyleOliveira, Luís M. L., Joel J. P. C. Rodrigues, Amaro F. De Sousa, and Jaime Lloret. 2013. "A Network Access Control Framework for 6LoWPAN Networks" Sensors 13, no. 1: 1210-1230. https://doi.org/10.3390/s130101210
APA StyleOliveira, L. M. L., Rodrigues, J. J. P. C., De Sousa, A. F., & Lloret, J. (2013). A Network Access Control Framework for 6LoWPAN Networks. Sensors, 13(1), 1210-1230. https://doi.org/10.3390/s130101210