Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors
Abstract
:1. Introduction
2. Optical Principles of Fiber Chemical Sensors and Biosensors
2.1. Optical Fibers for Chemical Sensors and Biosensors
2.2. Light Propagation in Optical Fibers and Optical Fiber Elements
- (1)
- n(r) > n2,
- (2)
- 2πn2 < β < 2πn1; β is a propagation constant.
3. Fiber Optic Chemical Sensor (FOCS)
3.1. Components of FOCS
3.2. FOCS for Medical and Biological Applications
4. Fiber Optic Biosensors (FOBS)
4.1. Enzymatic Optical Fiber Sensors with an Oxygen Transducer
4.2. Whole Cell Optical Fiber Sensors
4.2.1. Biosensors of Biochemical Oxygen Demand (BOD)
4.2.2. Biosensors of Pollutants and Toxic Compounds with Natural Cells
4.2.3. Multi-Wavelength Fluorescence Spectroscopy of Microorganisms
4.2.4. FOBS with Genetically Engineered Bioreporters
4.2.5. FOBS with Microorganisms Expressing Green Fluorescent Protein (GFP)
4.2.6. FOBS with Immobilized Living Bioluminescent Bioreporters
5. Immobilization of Biologicals for FOBS
Immobilization in Silica Gel and New Concepts of the Immobilization of Living Cells and Enzymes for Implementation in Optical Devices
6. Conclusions/Outlook
Acknowledgments
List of Symbols and Abbreviations
BCECF | 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein |
BOD | biological oxygen demand |
BTEX | benzene, toluene ethylbenzeme and xylene |
CCD | charge couple device |
CTU | Czech Technical University |
DNA | dinucleotide acid |
EM | electro-magnetic field |
EPA | U.S. Environmental Protection Agency |
FBG | fiber with Bragg grating |
FLPG | fiber with long period grating |
FMNH2 | reduced flavin mononucleotide |
FMNH2 | reduced flavin mononucleotide |
FOBS | fiber optic biosensor |
FOCS | fiber optic chemical sensor |
FOE | fiber optic element |
FOS | fiber optic sensor |
GFP | green fluorescent protein |
GI | gradient index |
GMO | genetically modified organism |
GO | geometry optics |
GOX | glucose oxidase |
HOPDA | chlorinated 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid |
HTPS | 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt |
IO | integrated optics |
IR | infra-red spectral range |
LbL | layer by layer |
LOD | limit of detection |
LUMOS | Luminescence Measuring Oxygen Sensor |
MM | multi mode |
NA | numeric aperture |
NADH | nicotienamide dinucleotide reduced form |
NADPH | nicotienamide dinucleotide phosphate reduced form |
OF | optical fiber |
PCB | polychlorinated biphenyls |
PCS | polymer clad silica fiber |
PMT | photomultiplier |
POF | plastic optical fiber |
RCHO | aliphatic aldehyde |
RIU | refraction index unit |
SEM | scanning electron microscopy |
SI | step index |
SM | single mode |
SMA | SubMiniature version A |
SPR | surface plasmon resonance |
ssDNA | double-stranded DNA |
ssDNA | single stranded DNA |
UV | Ultraviolet spectral range |
WGM | whispering galery mode |
vector of electric field intenzity | |
vector of magnetic field | |
n(r) | refractive index as function of diameter r |
β | propagation constant |
P0 | light power in core |
θc | angle of skew ray with fiber axis |
εm | electric permitivity |
μm | magnetic permeabilty |
γi | modified absorption coeficient |
de | equivalent thickness |
Rc | critical bend radius of fiber |
M(R) | reduced number of modes as function bend radius |
RB | bend radius of fiber |
M | number of guided modes |
λc | cut off wavelength |
E(x) | evanescence field |
dP | penetration depth |
α(λ) | attenuation on wavelength λ |
ε | molar extinction coefficient |
C | concentration |
Q | quantum yield |
l | optical path length in sample |
ψ0max | maximal launching angle of light source |
rmax | maximal radius of light source |
Conflicts of Interest
References
- Wolfbeis, O.S. Fiber-optic chemical sensors and biosensors. Anal. Chem. 2006, 78, 3859–3874. [Google Scholar] [CrossRef] [PubMed]
- Wolfbeis, O.S. Fiber-optic chemical sensors and biosensors. Anal. Chem. 2004, 76, 3269–3284. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.D.; Wolfbeis, O.S. Fiber-optic chemical sensors and biosensors (2008–2012). Anal. Chem. 2013, 85, 487–508. [Google Scholar] [CrossRef] [PubMed]
- Espinosa Bosch, M.; Ruiz Sanchez, A.J.; Sanchez Rojas, F.; Bosch Ojeda, C. Recent development in optical fiber biosensors. Sensors 2007, 7, 797–859. [Google Scholar] [CrossRef]
- Ince, R.; Narayanaswamy, R. Analysis of the performance of interferometry, surface plasmon resonance and luminescence as biosensors and chemosensors. Anal. Chim. Acta 2006, 569, 1–20. [Google Scholar] [CrossRef]
- Narayanaswamy, R. Optical chemical sensors and biosensors for food safety and security applications. Acta Biol. Szeged. 2006, 50, 105–108. [Google Scholar]
- Baldini, F.; Chester, A.N.; Homola, J.; Martellucci, S. Optical Chemical Sensors; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Monk, D.J.; Walt, D.R. Optical fiber-based biosensors. Anal. Bioanal. Chem. 2004, 379, 931–945. [Google Scholar] [CrossRef] [PubMed]
- Wolfbeis, O.S. Fiber-optic chemical sensors and biosensors. Anal. Chem. 2008, 80, 4269–4283. [Google Scholar] [CrossRef] [PubMed]
- Lowe, C.R. Overview of Biosensor and Bioarray Technologies. In Handbook of Biosensors and Biochips; John Wiley & Sons, Ltd: New York, NY, USA, 2008. [Google Scholar]
- Tagawa, T.; Tamura, T.; Oberg, P.A. Biomedical Sensors and Instruments, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Dakin, J.; Culshaw, B. Optical Fiber Sensors: Principles and Components; Artech House: Boston, MA, USA, 1988. [Google Scholar]
- Udd, E.; Spillman, W.B. Fiber Optic Sensors: An Introduction for Engineers and Scientists; Wiley: New York, NY, USA, 2011. [Google Scholar]
- Yin, S.; Ruffin, P.B.; Yu, F.T.S. Fiber Optic Sensors, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Wolfbeis, O.S. Chemical Sensing Using Indicator Dyes. In Optical Fiber Sensors: Applications, Analysis and Future Trends; Dakin, J., Culshaw, B., Eds.; Artech House: Boston, MA, USA/London, UK, 1997. [Google Scholar]
- Fang, Z.; Chin, K.; Qu, R.; Cai, H.; Chang, K. Fundamentals of Optical Fiber Sensors; Wiley: New York, NY, USA, 2012. [Google Scholar]
- Méndez, A.; Morse, T.F. Specialty Optical Fibers Handbook; Academic Press: Burlington, VT, USA, 2007. [Google Scholar]
- Martan, T.; Kanka, J.; Kasik, I.; Matejec, V. Theoretical analysis and preparation of tapered suspended core microstructure fibers. Int. J. Optomech. 2009, 3, 233–249. [Google Scholar] [CrossRef]
- Matejec, V.; Mrazek, J.; Podrazky, O.; Hayer, M.; Pospisilova, M. Fiber-optic u-shaped detection elements for the investigation of photocatalytic activity of optical fibers coated with layer of TiO2. Sens. Lett. 2009, 7, 900–904. [Google Scholar] [CrossRef]
- Chomat, M.; Berkova, D.; Matejec, V.; Kasik, I.; Kuncova, G. The effect of hydrodynamic conditions on the detection of aqueous solutions of toluene by means of an inverted graded-index fiber. Sens. Actuators B Chem. 2003, 90, 151–156. [Google Scholar] [CrossRef]
- Latifi, H.; Zibaii, M.I.; Hosseini, S.M.; Jorge, P. Nonadiabatic tapered optical fiber for biosensor applications. Photonic Sens. 2012, 2, 340–356. [Google Scholar] [CrossRef]
- Rahman, H.A.; Harun, S.W.; Yasin, M.; Phang, S.W.; Damanhuri, S.S.A.; Arof, H.; Ahmad, H. Tapered plastic multimode fiber sensor for salinity detection. Sens. Actuators B Phys. 2011, 171, 219–222. [Google Scholar] [CrossRef]
- Beres, C.; Batista de Nazare, F.V.; Chagas de Souza, N.C.; Lemos Miguel, M.A.; Werneck, M.M. Tapered plastic optical fiber-based biosensor—Tests and application. Biosens. Bioelectron. 2011, 30, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Optical Fibers. Available online: http://www.fiberguide.com/product/optical-fibers/ (accessed on 16 September 2015).
- Medical Devices for Laser Medicine & Endoscopy. Available online: http://www.leonifo.com/pdf_catalog/en_medical_devices_02.pdf (accessed on 16 September 2015).
- Chomat, M.; Berkova, D.; Matejec, V.; Kasik, I.; Kuncova, G.; Gagnaire, H.; Trouillet, A.; Bardin, F. Optical detection of toluene in water by using IGI fibers. Mater. Sci. Eng. C Biomim. Supramol. Syst. 2002, 21, 211–215. [Google Scholar] [CrossRef]
- Matejec, V.; Berkova, D.; Chomat, M.; Zabrodsky, M. Detection of toluene by using specially coated pcs fibers excited by an inclined collimated beam. Mater. Sci. Eng. C Biomim. Supramol. Syst. 2002, 21, 217–221. [Google Scholar] [CrossRef]
- Cherif, K.; Mrazek, J.; Hleli, S.; Matejec, V.; Abdelghani, A.; Chomat, M.; Jaffrezic-Renault, N.; Kasik, I. Detection of aromatic hydrocarbons in air and water by using xerogel layers coated on pcs fibers excited by an inclined collimated beam. Sens. Actuators B Chem. 2003, 95, 97–106. [Google Scholar] [CrossRef]
- Matejec, V.; Chomat, M.; Kasik, I.; Ctyroky, J.; Berkova, D.; Hayer, M. Inverted-graded index fiber structures for evanescent-wave chemical sensing. Sens. Actuators B Chem. 1998, 51, 340–347. [Google Scholar] [CrossRef]
- Matejec, V.; Chomat, M.; Pospisilova, M.; Hayer, M.; Kasik, I. Optical-fiber with novel geometry for evanescent-wave sensing. Sens. Actuators B Chem. 1995, 29, 416–422. [Google Scholar] [CrossRef]
- Argyros, A. Microstructured polymer optical fibers. J. Lightw. Technol. 2009, 27, 1571–1579. [Google Scholar] [CrossRef]
- Lezal, D.; Petrovska, B.; Kuncova, G.; Pospisilova, M.; Gotz, J. Chalcogenide—Halide glasses for Optical Waveguides. In Proceedings of the SPIE, The Hague, Netherlands, 30 March 1987; pp. 44–53.
- Harrington, J.A. Infrared Fibers and Their Applications; SPIE Press: Bellingham, WA, USA, 2004. [Google Scholar]
- Nemec, M.; Jelinkova, H.; Fibrich, M.; Koranda, P.; Miyagi, M.; Iwai, K.; Shi, Y.W.; Matsuura, Y. Mid-infrared radiation spatial profile delivered by cop/Ag hollow glass waveguide. Laser Phys. Lett. 2007, 4, 761–767. [Google Scholar] [CrossRef]
- Jelinkova, H.; Nemec, M.; Koranda, P.; Miyagi, M.; Shi, Y.W.; Matsuura, Y. Compact hollow glass waveguide system for Er: Yag laser radiation. In Proceedings of the Conference on Optical Fibers and Sensors for Medical Applications V, San Jose, CA, USA, 23 May 2005; pp. 192–199.
- Todorov, F.; Chomat, M.; Berkova, D.; Ctyroky, J.; Matejec, V.; Kasik, I. Sensitivity characteristics of long-period gratings written with a CO2 laser in fiber with parabolic-index cladding. Sens. Lett. 2009, 7, 979–983. [Google Scholar] [CrossRef]
- Chomat, M.; Berkova, D.; Todorov, F.; Ctyroky, J.; Matejec, V.; Kasik, I.; Probostova, J.; Salvia, M.; Jehid, J. Bend sensing with long-period fiber gratings in capillaries embedded in structures. Mater. Sci. Eng. C Biomim. Supramol. Syst. 2008, 28, 716–721. [Google Scholar] [CrossRef]
- Kim, S.C.; Jeong, Y.C.; Kim, S.W.; Kwon, J.J.; Park, N.K.; Lee, B.H. Control of the characteristics of a long-period grating by cladding etching. Appl. Opt. 2000, 39, 2038–2042. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.J.; Wang, Y.P.; Ran, Z.L.; Zhu, T. Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses. J. Lightw. Technol. 2003, 21, 1320–1327. [Google Scholar]
- Del Villar, I.; Matias, I.R.; Arregui, F.J.; Lalanne, P. Optimization of sensitivity in long period fiber gratings with overlay deposition. Opt. Express 2005, 13, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Hanumegowda, N.M.; Stica, C.J.; Patel, B.C.; White, I.; Fan, X.D. Refractometric sensors based on microsphere resonators. Appl. Phys. Lett. 2005, 87, 201107. [Google Scholar] [CrossRef]
- Quan, H.; Guo, Z.; Pau, S. Parametric Studies of Whispering-Gallery Mode Resonator. In Proceedings of the Nanosensing: Materials and Devices, Philadelphia, PA, USA, 25 October 2004; pp. 593–602.
- Matejec, V.; Jelinek, M.; Todorov, F.; Chomat, M.; Kubecek, V.; Berkova, D.; Martan, T. Effect of sol-gel modifications on characteristics of silica spherical microresonators. Sens. Lett. 2011, 9, 2265–2267. [Google Scholar] [CrossRef]
- Todorov, F.; Ctyroky, J.; Jelinek, M.; Chomat, M.; Matejec, V.; Kubecek, V.; Martan, T.; Berkova, D. Bottle microresonators fabricated by shaping optical fibers with a beam of a CO2 laser. Sens. Lett. 2011, 9, 2279–2282. [Google Scholar] [CrossRef]
- Vollmer, F.; Arnold, S. Whispering-gallery-mode biosensing: Label-free detection down to single molecules. Nat. Methods 2008, 5, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Zajic, J. Detection of pH with Fiber Optic Detection Elements; FBMI CTU: Kladno, Czech Republic, 2013. [Google Scholar]
- Pospisilova, M.; Kasik, I.; Matejec, V. Vlaknova Optika Pro Biologii a Medicinu; CTU Publishing House: Praha, Czech Republic, 2011. [Google Scholar]
- Lee, W.I.; Verdugo, P. Ciliary activity by laser light-scattering spectroscopy. Ann. Biomed. Eng. 1977, 5, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Leopold, J.; Pospisilova, M. Endoscopic Evaluation of Cilia Motion on the Respiratory Epithelial by Laser Reflectometry Utilizing Optical Fibers. In Instruments and Methods for Biology and Medicine; Vrbova, M., Machan, R., Eds.; Czech Technical University: Kladno, Czech Republic, 2012; pp. 61–63. [Google Scholar]
- Snyder, A.W.; Love, J. Optical Waveguide Theory; Springer: New York, NY, USA, 2012. [Google Scholar]
- Harrick, N.J. Internal Reflection Spectroscopy; Harrick Scientific: New York, NY, USA, 1979. [Google Scholar]
- Freger, V.; Ben-David, A. Use of attenuated total reflection infrared spectroscopy for analysis of partitioning of solutes between thin films and solution. Anal. Chem. 2005, 77, 6019–6025. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.H.; Chen, Z.P.; Kumar, J.; Tripathy, S.K.; Kaplan, D.L. Tapered fiber tips for fiber optic biosensors. Opt. Eng. 1995, 34, 3465–3470. [Google Scholar] [CrossRef]
- Homola, J. Surface Plasmon Resonance Based Sensors; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Bardin, F.; Kasik, I.; Trouillet, A.; Matejec, V.; Gagnaire, H.; Chomat, M. Surface plasmon resonance sensor using an optical fiber with an inverted graded-index profile. Appl. Opt. 2002, 41, 2514–2520. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B.D.; Verma, R.K. Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and some applications. J. Sens. 2009, 2009, 12. [Google Scholar] [CrossRef]
- Shambat, G.; Kothapalli, S.R.; Khurana, A.; Provine, J.; Sarmiento, T.; Cheng, K.; Cheng, Z.; Harris, J.; Daldrup-Link, H.; Gambhir, S.S.; Vuckovic, J. A photonic crystal cavity-optical fiber tip nanoparticle sensor for biomedical applications. Appl. Phys. Lett. 2012, 100, 213702. [Google Scholar] [CrossRef]
- Shay, T.M. Theory of electronically phased coherent beam combination without a reference beam. Opt. Express 2006, 14, 12188–12195. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.A. Fiberoptic chemical sensors. Anal. Chem. 1992, 64, A1015–A1025. [Google Scholar]
- Peterson, J.I.; Goldstein, S.R.; Fitzgerald, R.V.; Buckhold, D.K. Fiber optic pH probe for physiological use. Anal. Chem. 1980, 52, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, S.R.; Peterson, J.I.; Fitzgerald, R.V. A miniature fiber optic pH sensor for physiological use. J. Biomech. Eng. Trans. Asme 1980, 102, 141–146. [Google Scholar]
- Matejec, V.; Rose, K.; Hayer, M.; Pospisilova, M.; Chomat, M. Development of organically modified polysiloxanes for coating optical fibers and their sensitivity to gases and solvents. Sens. Actuators B Chem. 1997, 39, 438–442. [Google Scholar] [CrossRef]
- Rose, K.; Matejec, V.; Hayer, M.; Pospisilova, M. Organopolysiloxanes as chemically sensitive coatings for optical fibers. J. Sol. Gel Sci. Technol. 1998, 13, 729–733. [Google Scholar] [CrossRef]
- Mandelis, A. Signal-to-noise ratio in lock-in amplifier synchronous detection—A generalized communications-systems approach with applications to frequency, time, and hybrid (rate window) photothermal measurements. Rev. Sci. Instrum. 1994, 65, 3309–3323. [Google Scholar] [CrossRef]
- Li, H.; Lopes, N.; Moser, S.; Sayler, G.; Ripp, S. Silicon photomultiplier (SPM) detection of low-level bioluminescence for the development of deployable whole-cell biosensors: Possibilities and limitations. Biosens. Bioelectron. 2012, 33, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Marcuse, D. Principles of Optical Fiber Measurements; Elsevier Science: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Wallace, P.A.; Elliott, N.; Uttamlal, M.; Holmes-Smith, A.S.; Campbell, M. Development of a quasi-distributed optical fibre pH sensor using a covalently bound indicator. Meas. Sci. Technol. 2001, 12, 882–886. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E.; Bhatia, A.B.; Gabor, D.; Stokes, A.R.; Taylor, A.M.; Wayman, P.A.; Wilcock, W.L. Principles of optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Ligh; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Hecht, E. Optics; Pearson Education: New York, NY, USA, 2008. [Google Scholar]
- Barnoski, M.K. Fundamentals of Optical Fiber Communications; Academic Press: Burlington, VT, USA, 1976. [Google Scholar]
- Miller, S. Optical Fiber Telecommunications; Elsevier Science: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Barnoski, M. Fundamentals of Optical Fiber Communications; Elsevier Science: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Molecular Probes®. Available online: http://www.lifetechnologies.com/cz/en/home/brands/molecular-probes.html?icid=fr-probe-main (accessed on 17 September 2015).
- Wencel, D.; MacCraith, B.D.; McDonagh, C. High performance optical ratiometric sol-gel-based ph sensor. Sens. Actuators B Chem. 2009, 139, 208–213. [Google Scholar] [CrossRef]
- Narayanaswamy, R.; Wolfbeis, O.S. Optical Sensors: Industrial, Environmental and Diagnostic Applications; Springer: Dodrecht, The Netherlands, 2004. [Google Scholar]
- Vo-Dinh, T.; Kasili, P. Fiber-optic nanosensors for single-cell monitoring. Anal. Bioanal. Chem. 2005, 382, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Vo-Dinh, T.; Zhang, Y. Single-cell monitoring using fiberoptic nanosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011, 3, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dhawan, A.; Vo-Dinh, T. Design and fabrication of fiber-optic nanoprobes for optical sensing. Nanoscale Res. Lett. 2011. [Google Scholar] [CrossRef]
- Cherif, K.; Abdelghani, A.; Hleli, S.; Ponsonnet, L.; Jaffrezic-Renault, N.; Matejec, V. Contact angle measurement on xerogel sensitive layer for optical fibre sensor. Mater. Sci. Eng. CBiomim. Supramol. Syst. 2003, 23, 571–577. [Google Scholar] [CrossRef]
- Kasik, I.; Pospisilova, M.; Matejec, V.; Chomat, M.; Rose, K.; Sasek, L. Sensitivity of Silica Optical Fibers Coated with Ormocers to Gaseous CO2. In Proceedings of 4th European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE IV, Munster, Germany, 29 March 1998; pp. 273–274.
- Kasik, I.; Mrazek, J.; Martan, T.; Pospisilova, M.; Podrazky, O.; Matejec, V.; Hoyerova, K.; Kaminek, M. Fiber-optic pH detection in small volumes of biosamples. Anal. Bioanal. Chem. 2010, 398, 1883–1889. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, Y.; Noda, J. Novel fiber coupled tapering process using a microheater. IEEE Photonics Technol. Lett. 1992, 4, 465–467. [Google Scholar] [CrossRef]
- Yokota, H.; Sugai, E.; Sasaki, Y. Optical irradiation method for fiber coupler fabrications. Opt. Rev. 1997, 4, 104–107. [Google Scholar] [CrossRef]
- Pospisilova, M.; Petrasek, J.; Matejec, V.; Kasik, I. Characterization of Sensing Layer onto the Tip Tapered Fiber. In Proceedings of the Conference on Optical Sensors, Prague, Czech Republic, 22 April 2009.
- Valledor, M.; Campo, J.C.; Ferrero, F.; Sanchez-Barragan, I.; Costa-Fernandez, J.M.; Sanz-Medel, A. A critical comparison between two different ratiometric techniques for optical luminescence sensing. Sens. Actuators B Chem. 2009, 139, 237–244. [Google Scholar] [CrossRef]
- Vrbova, H.; Kuncova, G.; Pospisilova, M. Optical fiber element of sensor with bioluminescent cells. In Proceedings of the Book of abstracts of 4th European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE X, Prague, Czech Republic; 2010; p. 85. [Google Scholar]
- Kalabova, H.; Pospisilova, M.; Jirina, M.; Kuncova, G. Whole-cell biosensor for detection of environmental pollution enhancement of detected bioluminescence. Curr. Opin. Biotechnol. 2013, 24, S32–S32. [Google Scholar] [CrossRef]
- Chen, L.H.; Ang, X.M.; Chan, C.C.; Shaillender, M.; Neu, B.; Wong, W.C.; Zu, P.; Leong, K.C. Layer-by-layer (chitosan/polystyrene sulfonate) membrane-based fabry-perot interferometric fiber optic biosensor. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 1457–1464. [Google Scholar] [CrossRef]
- Pilla, P.; Malachovska, V.; Borriello, A.; Buosciolo, A.; Giordano, M.; Ambrosio, L.; Cutolo, A.; Cusano, A. Transition mode long period grating biosensor with functional multilayer coatings. Opt. Express 2011, 19, 512–526. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.P.; Taitt, C.R.; Ligler, F.S. Chapter 2—Evanescent Wave Fiber Optic Biosensors; Elsevier: Amsterdam, The Netherlands, 2008; pp. 83–138. [Google Scholar]
- Ko, S.H.; Grant, S.A. A novel fret-based optical fiber biosensor for rapid detection of salmonella typhimurium. Biosens. Bioelectron. 2006, 21, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Su, L.C.; Chang, Y.F.; Chou, C.; Ho, J.A.A.; Li, Y.C.; Chou, L.D.; Lee, C.C. Binding kinetics of biomolecule interaction at ultralow concentrations based on gold nanoparticle enhancement. Anal. Chem. 2011, 83, 3290–3296. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.J.J.; Lim, J.L.; Park, M.K.; Kao, L.T.-H.; Wang, Y.; Wei, H.; Tong, W. Photonic crystal fiber-based interferometric biosensor for streptavidin and biotin detection. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 1293–1297. [Google Scholar] [CrossRef]
- Llobera, A.; Cadarso, V.J.; Darder, M.; Dominguez, C.; Fernandez-Sanchez, C. Full-field photonic biosensors based on tunable bio-doped sol-gel glasses. Lab. Chip 2008, 8, 1185–1190. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.M.; Scully, P.J.; Bartlett, R.J.; Kuang, K.S.C.; Cantwell, W.J. Plastic optical fibre sensors for environmental monitoring: Biofouling and strain applications. Strain 2003, 39, 115–119. [Google Scholar] [CrossRef]
- Philip-Chandy, R.; Scully, P.J.; Eldridge, P.; Kadim, H.J.; Grapin, M.G.; Jonca, M.G.; D'Ambrosio, M.G.; Colin, F. An optical fiber sensor for biofilm measurement using intensity modulation and image analysis. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 764–772. [Google Scholar] [CrossRef]
- Cennamo, N.; Varriale, A.; Pennacchio, A.; Staiano, M.; Massarotti, D.; Zeni, L.; D’Auria, S. An innovative plastic optical fiber-based biosensor for new bio/applications. The case of celiac disease. Sens. Actuators B Chem. 2013, 176, 1008–1014. [Google Scholar] [CrossRef]
- Walt, D.R. Fibre optic microarrays. Chem. Soc. Rev. 2010, 39, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Brogan, K.L.; Walt, D.R. Optical fiber-based sensors: Application to chemical biology. Curr. Opin. Chem. Biol. 2005, 9, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Shepard, J.R.E.; Danin-Poleg, Y.; Kashi, Y.; Walt, D.R. Array-based binary analysis for bacterial typing. Anal. Chem. 2005, 77, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Zourob, M.; Elwary, S.; Turner, A.; Hayman, R. Fiber Optic Biosensors for Bacterial Detection. In Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems; Springer: New York, NY, USA, 2008; pp. 125–137. [Google Scholar]
- Roda, A.; Cevenini, L.; Michelini, E.; Branchini, B.R. A portable bioluminescence engineered cell-based biosensor for on-site applications. Biosens. Bioelectron. 2011, 26, 3647–3653. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.C.; Alvis, R.M.; Brown, S.B.; Langry, K.C.; Wilson, T.S.; McBride, M.T.; Myrick, M.L.; Cox, W.R.; Grove, M.E.; Colston, B.W. Fabricating optical fiber imaging sensors using inkjet printing technology: A pH sensor proof-of-concept. Biosens. Bioelectron. 2006, 21, 1359–1364. [Google Scholar] [CrossRef] [PubMed]
- Resch-Genger, U. Standardization and Quality Assurance in Fluorescence Measurements I: Techniques; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Biran, I.; Yu, X.; Walt, D.R.; Ligler, F.S.; Taitt, C.R. Chapter 1—Optrode-Based Fiber Optic Biosensors (Bio-Optrode); Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Long, F.; Zhu, A.; Shi, H. Recent advances in optical biosensors for environmental monitoring and early warning. Sensors 2013, 13, 13928–13948. [Google Scholar] [CrossRef] [PubMed]
- Justino, C.I.L.; Rocha-Santos, T.A.; Duarte, A.C. Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC Trends Anal. Chem. 2010, 29, 1172–1183. [Google Scholar] [CrossRef]
- Hesse, H.C. Messonde zur Konzentrationsbestimmung von Stoffen. East German Patent 106086, 20 May 1974. [Google Scholar]
- McDonagh, C.; Burke, C.S.; MacCraith, B.D. Optical chemical sensors. Chem. Rev. 2008, 108, 400–422. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, M.; Borisov, S.M.; Klimant, I. Indicators for optical oxygen sensors. Bioanal. Rev. 2012, 4, 115–157. [Google Scholar] [CrossRef] [PubMed]
- Dmitriev, R.I.; Papkovsky, D.B. Optical probes and techniques for O2 measurement in live cells and tissue. Cell. Mol. Life Sci. 2012, 69, 2025–2039. [Google Scholar] [CrossRef] [PubMed]
- Voraberger, H.S.; Kreimaier, H.; Biebernik, K.; Kern, W. Novel oxygen optrode withstanding autoclavation: Technical solutions and performance. Sens. Actuators B Chem. 2001, 74, 179–185. [Google Scholar] [CrossRef]
- Kuncova, G.; Fialova, M. Optical oxygen sensor-based on metalloorganic compound immobilized by sol-gel technique. Biotechnol. Tech. 1995, 9, 175–178. [Google Scholar] [CrossRef]
- Heo, J.; Kim, C. Easily Accessible Optoelectronic Devices Colorimetric Approach Focused on Oxygen Quantification. In Smart Sensors for Industrial Applications; Iniewski, K., Ed.; Taylor & Francis: London, UK, 2013; pp. 113–127. [Google Scholar]
- Esposito, R.; Della Ventura, B.; de Nicola, S.; Altucci, C.; Velotta, R.; Mita, D.G.; Lepore, M. Glucose sensing by time-resolved fluorescence of sol-gel immobilized glucose oxidase. Sensors 2011, 11, 3483–3497. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, A.; Kimura, Y.; Tamai, A.; Matsumoto, K. Gamma-Aminobutyric Acid (GABA) Sensor Using Gaba Oxidase from penicillinum sp. Kait-m-117. In Proceedings of the 214th ECS Meeting, Honolulu, HI, USA, 12 October 2008.
- Amine, A.; Palleschi, G. Phosphate, nitrate, and sulfate biosensors. Anal. Lett. 2004, 37, 1–19. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Li, M.; Pan, Z.; Li, D. A disposable biosensor based on immobilization of laccase with silica spheres on the mwcnts-doped screen-printed electrode. Chem. Cent. J. 2012. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Z.; Zhang, Z.J.; Li, L. A simplified enzyme-based fiber optic sensor for hydrogen-peroxide and oxidase substrates. Talanta 1994, 41, 1999–2002. [Google Scholar]
- Spohn, U.; Preuschoff, F.; Blankenstein, G.; Janasek, D.; Kula, M.R.; Hacker, A. Chemiluminometric enzyme sensors for flow-injection analysis. Anal. Chim. Acta 1995, 303, 109–120. [Google Scholar] [CrossRef]
- Huang, J.; Fang, H.; Liu, C.; Gu, E.; Jiang, D. A novel fiber optic biosensor for the determination of adrenaline based on immobilized laccase catalysis. Anal. Lett. 2008, 41, 1430–1442. [Google Scholar] [CrossRef]
- Yue, H.; He, J.; Xiao, D.; Choi, M.M.F. Biosensor for determination of hydrogen peroxide based on yucca filamentosa membrane. Anal. Methods 2013, 5, 5437–5443. [Google Scholar] [CrossRef]
- House, J.L.; Anderson, E.M.; Ward, W.K. Immobilization techniques to avoid enzyme loss from oxidase-based biosensors: A one-year study. J. Diabetes Sci. Technol. 2007, 1, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.Q. Immobilised enzymes: Science or art? Curr. Opin. Chem. Biol. 2005, 9, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Pasic, A.; Koehler, H.; Klimant, I.; Schaupp, L. Miniaturized fiber-optic hybrid sensor for continuous glucose monitoring in subcutaneous tissue. Sens. Actuators B Chem. 2007, 122, 60–68. [Google Scholar] [CrossRef]
- Brown, J.Q.; McShane, M.J. Modeling of spherical fluorescent glucose microsensor systems: Design of enzymatic smart tattoos. Biosens. Bioelectron. 2006, 21, 1760–1769. [Google Scholar] [CrossRef] [PubMed]
- Rose, K.; Dzyadevych, S.; Fernandez-Lafuente, R.; Jaffrezic, N.; Kuncova, G.; Matejec, V.; Scully, P. Hybrid coatings as transducers in optical biosensors. J. Coat. Technol. Res. 2008, 5, 491–496. [Google Scholar] [CrossRef]
- Vaclavikova, E. Enzymatic Biosensors for Fermentation Processes; ICT: Prague, Czech Republic, 2008. [Google Scholar]
- Spacil, J. Optical Sensors in Brewing; ICT: Prague, Czech Republic, 2006. [Google Scholar]
- Matinoes Video. Available online: http://www.icpf.cas.cz/cs/matinoes (accessed on 17 September 2015).
- Pospiskova, K.; Safarik, I.; Sebela, M.; Kuncova, G. Magnetic particles-based biosensor for biogenic amines using an optical oxygen sensor as a transducer. Microchim. Acta 2013, 180, 311–318. [Google Scholar] [CrossRef]
- Scully, P.J.; Betancor, L.; Bolyo, J.; Dzyadevych, S.; Guisan, J.M.; Fernandez-Lafuente, R.; Jaffrezic-Renault, N.; Kuncova, G.; Matejec, V.; O’Kennedy, B.; et al. Optical fibre biosensors using enzymatic transducers to monitor glucose. Meas. Sci. Technol. 2007, 18, 3177–3186. [Google Scholar] [CrossRef]
- Kahyaoglu, L.N.; Madangopal, R.; Stensberg, M.; Rickus, J.L. Light-Directed Functionalization Methods for High-Resolution Optical Fiber Based Biosensors; SPIE Sensing Technology+ Applications, 2015; International Society for Optics and Photonics: Baltimore, USA, 2015; pp. 948605–948610. [Google Scholar]
- Trogl, J.; Chauhan, A.; Ripp, S.; Layton, A.C.; Kuncova, G.; Sayler, G.S. Pseudomonas fluorescens HK44: Lessons learned from a model whole-cell bioreporter with a broad application history. Sensors 2012, 12, 1544–1571. [Google Scholar] [CrossRef] [PubMed]
- Trogl, J.; Kuncova, G.; Kubicova, L.; Parik, P.; Halova, J.; Demnerova, K.; Ripp, S.; Sayler, G.S. Response of the bioluminescent bioreporter pseudomonas fluorescens HK44 to analogs of naphthalene and salicylic acid. Folia Microbiol. 2007, 52, 3–14. [Google Scholar] [CrossRef]
- Kuncova, G.; Pazlarova, J.; Hlavata, A.; Ripp, S.; Sayler, G.S. Bioluminescent bioreporter Pseudomonas putida TVA8 as a detector of water pollution. Operational conditions and selectivity of free cells sensor. Ecol. Indic. 2011, 11, 882–887. [Google Scholar] [CrossRef]
- Gavlasova, P.; Kuncova, G.; Kochankova, L.; Mackova, M. Whole cell biosensor for polychlorinated biphenyl analysis based on optical detection. Int. Biodeterior. Biodegradation 2008, 62, 304–312. [Google Scholar] [CrossRef]
- Kuncova, G.; Triska, J.; Vrchotova, N.; Podrazky, O. The influence of immobilization of Pseudomonas sp2 on optical detection of polychlorinated biphenyls. Mater. Sci. Eng. C Biomim. Supramol. Syst. 2002, 21, 195–201. [Google Scholar] [CrossRef]
- Semple, K.T.; Doick, K.J.; Wick, L.Y.; Harms, H. Microbial interactions with organic contaminants in soil: Definitions, processes and measurement. Environ. Pollut. 2007, 150, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Semple, K.T.; Doick, K.J.; Jones, K.C.; Burauel, P.; Craven, A.; Harms, H. Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ. Sci. Technol. 2004, 38, 228A–231A. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.T.; Close, D.M.; Sayler, G.S.; Ripp, S. Genetically modified whole-cell bioreporters for environmental assessment. Ecol. Indic. 2013, 28, 125–141. [Google Scholar] [CrossRef]
- Megharaj, M.; Ramakrishnan, B.; Venkateswarlu, K.; Sethunathan, N.; Naidu, R. Bioremediation approaches for organic pollutants: A critical perspective. Environ. Int. 2011, 37, 1362–1375. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Choi, S. Technology and applications of microbial biosensor. Open J. Appl. Biosens. 2013, 2, 11. [Google Scholar] [CrossRef]
- Michelini, E.; Cevenini, L.; Calabretta, M.M.; Spinozzi, S.; Camborata, C.; Roda, A. Field-deployable whole-cell bioluminescent biosensors: So near and yet so far. Anal. Bioanal. Chem. 2013, 405, 6155–6163. [Google Scholar] [CrossRef] [PubMed]
- Eltzov, E.; Marks, R.S. Fiber-optic based cell sensors. In Whole Cell Sensing Systems I; Springer: Berlin/Heidelberg, Germany, 2010; pp. 131–154. [Google Scholar]
- Preininger, C.; Klimant, I.; Wolfbeis, O.S. Optical-fiber sensor for biological oxygen-demand. Anal. Chem. 1994, 66, 1841–1846. [Google Scholar] [CrossRef]
- Jiang, Y.; Xiao, L.L.; Zhao, L.; Chen, X.; Wang, X.; Wong, K.Y. Optical biosensor for the determination of BOD in seawater. Talanta 2006, 70, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.-J.; Lin, L.; Li, P.-W.; Chen, X.; Wang, X.-R.; Wong, K.-Y. Comparison of bod optical fiber biosensors based on different microorganisms immobilized in Ormosil matrixes. Int. J. Environ. Anal. Chem. 2004, 84, 607–617. [Google Scholar] [CrossRef]
- Velling, S.; Orupõld, K.; Tenno, T. BOD Sensor for Wastewater Analysis-Design and Calibration Methods. In Linnaeus ECO-TECH ’10; Linnaaeus University: Klamar, Sweeden, 2010. [Google Scholar]
- Titze, J.; Walter, H.; Jacob, F.; Friess, A.; Parlar, H. Evaluation of a new optical sensor for measuring dissolved oxygen by comparison with standard analytical methods. Monatsschr. Brauwiss. 2008, 61, 66–80. [Google Scholar]
- Rustum, R.; Adeloye, A.J.; Scholz, M. Applying kohonen self-organizing map as a software sensor to predict biochemical oxygen demand. Water Environ. Res. 2008, 80, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Ponomareva, O.N.; Arlyapov, V.A.; Alferov, V.A.; Reshetilov, A.N. Microbial biosensors for detection of biological oxygen demand (a review). Appl. Biochem. Microbiol. 2011, 47, 1–11. [Google Scholar] [CrossRef]
- Chong, S.S.; Abdul Aziz, A.R.; Harun, S.W. Fibre optic sensors for selected wastewater characteristics. Sensors 2013, 13, 8640–8668. [Google Scholar] [CrossRef] [PubMed]
- Kwok, N.Y.; Dong, S.J.; Lo, W.H.; Wong, K.Y. An optical biosensor for multi-sample determination of biochemical oxygen demand (BOD). Sens. Actuators B Chem. 2005, 110, 289–298. [Google Scholar] [CrossRef]
- Koester, M.; Gliesche, C.G.; Wardenga, R. Microbiosensors for measurement of microbially available dissolved organic carbon: Sensor characteristics and preliminary environmental application. Appl. Environ. Microbiol. 2006, 72, 7063–7073. [Google Scholar] [CrossRef] [PubMed]
- Bjerketorp, J.; Hakansson, S.; Belkin, S.; Jansson, J.K. Advances in preservation methods: Keeping biosensor microorganisms alive and active. Curr. Opin. Biotechnol. 2006, 17, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Depagne, C.; Roux, C.; Coradin, T. How to design cell-based biosensors using the sol-gel process. Anal. Bioanal. Chem. 2011, 400, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.S.; Lee, Y.H.; Surif, S. Whole cell biosensor using anabaena torulosa with optical transduction for environmental toxicity evaluation. J. Sens. 2013, 2013, 567272. [Google Scholar] [CrossRef]
- Verma, N.; Bansal, M.; Kumar, S. Whole cell based miniaturized fiber optic biosensor to monitor l-asparagine. Adv. Appl. Sci. Res. 2012, 3, 809–814. [Google Scholar]
- Pena-Vazquez, E.; Maneiro, E.; Perez-Conde, C.; Cruz Moreno-Bondi, M.; Costas, E. Microalgae fiber optic biosensors for herbicide monitoring using sol-gel technology. Biosens. Bioelectron. 2009, 24, 3538–3543. [Google Scholar] [CrossRef] [PubMed]
- Pena-Vazquez, E.; Perez-Conde, C.; Costas, E.; Moreno-Bondi, M.C. Development of a microalgal pam test method for Cu(II) in waters: Comparison of using spectrofluorometry. Ecotoxicology 2010, 19, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Shelle, B.; Dress, P.; Franke, H.; Kuncova, G.; Pazlarova, J.; Burkhard, J. Application of liquid core waveguide for early detection of PCBs. In Proceedings of the 8th Vienna Opt(r)ode workshop, Prague, Czech Republic, Institute of Photonics and Electronics AS ČR, Prague, Czech Republic, 1998; pp. 71–72.
- Lucas, P.; Solis, M.A.; le Coq, D.; Juncker, C.; Riley, M.R.; Collier, J.; Boesewetter, D.E.; Boussard-Pledel, C.; Bureau, B. Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells. Sens. Actuators B Chem. 2006, 119, 355–362. [Google Scholar] [CrossRef]
- Banerjee, P.; Lenz, D.; Robinson, J.P.; Rickus, J.L.; Bhunia, A.K. A novel and simple cell-based detection system with a collagen-encapsulated b-lymphocyte cell line as a biosensor for rapid detection of pathogens and toxins. Lab. Investig. 2008, 88, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Moon, S.; Hefner, E.; Beyazoglu, T.; Emre, A.E.; Manzur, T.; Demirci, U. A High-Throughput Label-Free Cell-Based Biosensor (CBB) System. In Proceedings of the Conference on Unattended Ground, Sea, and Air Sensor Technologies and Applications XII, Orlando, FL, USA, 17 March 2010.
- Ganzlin, M.; Marose, S.; Lu, X.; Hitzmann, B.; Scheper, T.; Rinas, U. In situ multi-wavelength fluorescence spectroscopy as effective tool to simultaneously monitor spore germination, metabolic activity and quantitative protein production in recombinant Aspergillus niger fed-batch cultures. J. Biotechnol. 2007, 132, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Marose, S.; Lindemann, C.; Scheper, T. Two-dimensional fluorescence spectroscopy: A new tool for on-line bioprocess monitoring. Biotechnol. Prog. 1998, 14, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Podrazky, O.; Kuncova, G. Determination of concentration of living immobilized yeast cells by fluorescence spectroscopy. Sens. Actuators B Chem. 2005, 107, 126–134. [Google Scholar] [CrossRef]
- Podrazky, O.; Kuncova, G.; Krasowska, A.; Sigler, K. Monitoring the growth and stress responses of yeast cells by two-dimensional fluorescence spectroscopy: First results. Folia Microbiol. 2003, 48, 189–192. [Google Scholar] [CrossRef]
- Nienhaus, K.; Nienhaus, G.U. Fluorescent proteins for live-cell imaging with super-resolution. Chem. Soc. Rev. 2014, 43, 1088–1106. [Google Scholar] [CrossRef] [PubMed]
- Close, D.M.; Ripp, S.; Sayler, G.S. Reporter proteins in whole-cell optical bioreporter detection systems, biosensor integrations, and biosensing applications. Sensors 2009, 9, 9147–9174. [Google Scholar] [CrossRef] [PubMed]
- Medvedeva, S.E.; Tyulkova, N.A.; Kuznetsov, A.M.; Rodicheva, E.K. Bioluminescent bioassays based on luminous bacteria. J. Sib. Fed. Univ. Biol. 2009, 2, 418–452. [Google Scholar]
- Tecon, R.; van der Meer, J.R. Information from single-cell bacterial biosensors: What is it good for? Curr. Opin. Biotechnol. 2006, 17, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Shetty, R.S.; Ramanathan, S.; Badr, I.H.A.; Wolford, J.L.; Daunert, S. Green fluorescent protein in the design of a living biosensing system for l-arabinose. Anal. Chem. 1999, 71, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Knight, A.W.; Goddard, N.J.; Fielden, P.R.; Barker, M.G.; Billinton, N.; Walmsley, R.M. Development of a flow-through detector for monitoring genotoxic compounds by quantifying the expression of green fluorescent protein in genetically modified yeast cells. Meas. Sci. Technol. 1999, 10, 211–217. [Google Scholar] [CrossRef]
- Knight, A.W.; Goddard, N.J.; Fielden, P.R.; Gregson, A.L.; Billinton, N.; Baker, M.G.; Walmsley, R.M. The application of fluorescence polarisation for the enhanced detection of green fluorescent protein (GFP) in the presence of cellular auto-fluorescence and other green fluorescent compounds. Analyst 2000, 125, 499–506. [Google Scholar] [CrossRef]
- Lu, C.H.; Albano, C.R.; Bentley, W.E.; Rao, G. Differential rates of gene expression monitored by green fluorescent protein. Biotechnol. Bioeng. 2002, 79, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Sayler, G.; Martrubutham, U.; Menn, F.; Johnston, W.; Stapleton, R. Molecular Probes and Biosensors in Bioremediation and Site Assesment. In Bioremediation: Principles and Practice; Sikdar, S.K., Irvine, R., Eds.; Technomic: Lancaster, PA, USA, 1998; pp. 385–434. [Google Scholar]
- Close, D.; Xu, T.; Smartt, A.; Rogers, A.; Crossley, R.; Price, S.; Ripp, S.; Sayler, G. The evolution of the bacterial luciferase gene cassette (lux) as a real-time bioreporter. Sensors 2012, 12, 732–752. [Google Scholar] [CrossRef] [PubMed]
- Woutersen, M.; Belkin, S.; Brouwer, B.; van Wezel, A.P.; Heringa, M.B. Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources? Anal. Bioanal. Chem. 2011, 400, 915–929. [Google Scholar] [CrossRef] [PubMed]
- Devos, Y.; Aguilera, J.; Diveki, Z.; Gomes, A.; Liu, Y.; Paoletti, C.; du Jardin, P.; Herman, L.; Perry, J.N.; Waigmann, E. Efsa’s scientific activities and achievements on the risk assessment of genetically modified organisms (GMOS) during its first decade of existence: Looking back and ahead. Transgenic Res. 2014, 23, 1–25. [Google Scholar] [CrossRef] [PubMed]
- EU. Directive 2009/41/EC of the European Parliament and of the Council of 6 May 2009 on the Contained Use of Genetically Modified Micro-Organisms; EU: Brussels, Belgium, 2009. [Google Scholar]
- Paulsen, I.T.; Holmes, A.J.; Wang, Y.; Zhang, D.; Davison, P.; Huang, W. Bacterial Whole-Cell Biosensors for the Detection of Contaminants in Water and Soils. In Environmental Microbiology; Humana Press: New York, NY, USA, 2014; pp. 155–168. [Google Scholar]
- Ripp, S.; Nivens, D.E.; Ahn, Y.; Werner, C.; Jarrell, J.; Easter, J.P.; Cox, C.D.; Burlage, R.S.; Sayler, G.S. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ. Sci. Technol. 2000, 34, 846–853. [Google Scholar] [CrossRef]
- Ripp, S.; Nivens, D.E.; Sayler, G.S. Field Release of Genetically Engineered Bioluminescent Bioreporters for Bioremediation Process Monitoring and Control. In Innovative Methods in Support of Bioremediation; Magar, V., Vogel, T.M., Aelion, C.M., Leeson, A., Eds.; Battelle Press: San DIego, CA, USA, 2001; pp. 45–50. [Google Scholar]
- Layton, A.; Smartt, A.; Chauhan, A.; Ripp, S.; Williams, D.; Burton, W.; Moser, S.; Phillips, J.; Palumbo, A.V.; Sayler, G.S. Ameliorating risk: Culturable and metagenomic monitoring of the 14 year decline of a genetically engineered microorganism at a bioremediation field site. J. Bioremediat. Biodegrad. 2012. [Google Scholar] [CrossRef]
- Dorn, J.G.; Mahal, M.K.; Brusseau, M.L.; Maier, R.M. Employing a novel fiber optic detection system to monitor the dynamics of in situ lux bioreporter activity in porous media: System performance update. Anal. Chim. Acta 2004, 525, 63–74. [Google Scholar] [CrossRef]
- Smartt, A.E.; Ripp, S. Bacteriophage reporter technology for sensing and detecting microbial targets. Anal. Bioanal. Chem. 2011, 400, 991–1007. [Google Scholar] [CrossRef] [PubMed]
- Polyak, B.; Bassis, E.; Novodvorets, A.; Belkin, S.; Marks, R.S. Bioluminescent whole cell optical fiber sensor to genotoxicants: System optimization. Sens. Actuators B Chem. 2001, 74, 18–26. [Google Scholar] [CrossRef]
- Hakkila, K.; Green, T.; Leskinen, P.; Ivask, A.; Marks, R.; Virta, M. Detection of bioavailable heavy metals in eilatox-oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J. Appl. Toxicol. 2004, 24, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Kuncova, G.; Pospisilova, M.; Solovyev, A. Optical Fiber Whole Cell Bioluminescent Sensor. In Proceedings of the International Conference on Bioencapsulation, Book of Abstracts, Orillia, ON, Canada, 21 September 2012; pp. 96–97.
- Polyak, B.; Geresh, S.; Marks, R.S. Synthesis and characterization of a biotin-alginate conjugate and its application in a biosensor construction. Biomacromolecules 2004, 5, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Eltzov, E.; Pavluchkov, V.; Burstin, M.; Marks, R.S. Creation of a fiber optic based biosensor for air toxicity monitoring. Sens. Actuators B Chem. 2011, 155, 859–867. [Google Scholar] [CrossRef]
- Ben-Yoav, H.; Melamed, S.; Freeman, A.; Shacham-Diamand, Y.; Belkin, S. Whole-cell biochips for bio-sensing: Integration of live cells and inanimate surfaces. Crit. Rev. Biotechnol. 2011, 31, 337–353. [Google Scholar] [CrossRef] [PubMed]
- Premkumar, J.R.; Lev, O.; Marks, R.S.; Polyak, B.; Rosen, R.; Belkin, S. Antibody-based immobilization of bioluminescent bacterial sensor cells. Talanta 2001, 55, 1029–1038. [Google Scholar] [CrossRef]
- Flickinger, M.C.; Schottel, J.L.; Bond, D.R.; Aksan, A.; Scriven, L.E. Painting and printing living bacteria: Engineering nanoporous biocatalytic coatings to preserve microbial viability and intensify reactivity. Biotechnol. Progr. 2007, 23, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Balassundaram, A. Study of Hydrogel Properties and Immobilization of a Bioluminescent Bioreporter. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, May 2006. [Google Scholar]
- Gravel, H. Comparing the Response of Suspended and Immobilized Whole-Cell Bioluminescent Biosensor ppf1g4. Master’s Thesis, McGill University, Montreal, QC, Canada, 1 January 2008. [Google Scholar]
- Mitchell, R.J.; Gu, M.B. Characterization and optimization of two methods in the immobilization of 12 bioluminescent strains. Biosens. Bioelectron. 2006, 22, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Kuncova, G.; Trogl, J. Physiology of Microorganisms Immobilized into Inorganic Polymers. In Handbook of Inorganic Chemistry Research; Morrison, D.A., Ed.; Nova Science Publishers, Inc: Hauppauge, NY, USA, 2010; pp. 53–101. [Google Scholar]
- Kuncova, G.; Podrazky, O.; Ripp, S.; Trogl, J.; Sayler, G.S.; Demnerova, K.; Vankova, R. Monitoring of the viability of cells immobilized by sol-gel process. J. Sol. Gel. Sci. Technol. 2004, 31, 335–342. [Google Scholar] [CrossRef]
- Schipunov, Y. Entrapment of Biopolymers into Sol-Gel-Derived Silica Nanonocomposites. In Bio-Inorganic Hybrid Nanomaterials: Strategies, Syntheses, Characterization and Applications, 1st ed.; Ruiz-Hitzky, E., Ariga, K., Lvo, Y., Eds.; Wiley-VCH Verlag GmbH and Co. KGaA: Weinheim, Germany, 2008; pp. 75–112. [Google Scholar]
- Perullini, M.; Amoura, M.; Roux, C.; Coradin, T.; Livage, J.; Laura Japas, M.; Jobbagy, M.; Bilmes, S.A. Improving silica matrices for encapsulation of Escherichia coli using osmoprotectors. J. Mater. Chem. 2011, 21, 4546–4552. [Google Scholar] [CrossRef]
- Perullini, M.; Amoura, M.; Jobbagy, M.; Roux, C.; Livage, J.; Coradin, T.; Bilmes, S.A. Improving bacteria viability in metal oxide hosts via an alginate-based hybrid approach. J. Mater. Chem. 2011, 21, 8026–8031. [Google Scholar] [CrossRef]
- Merhari, L.; Yip, W.; Zhou, Y.; Martyn, T.; Gillil, J. Silica Sol-Gel Biocomposite Materials for Sensor Development. In Hybrid Nanocomposites for Nanotechnology; Springer US: New York, NY, USA, 2009; pp. 795–825. [Google Scholar]
- Blondeau, M.; Coradin, T. Living materials from sol-gel chemistry: Current challenges and perspectives. J. Mater. Chem. 2012, 22, 22335–22343. [Google Scholar] [CrossRef]
- Moreira, F.T.C.; Moreira-Tavares, A.P.; Sales, M.G.F. Sol-gel-based biosensing applied to medicinal science. Curr. Top. Med. Chem. 2015, 15, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Levy, D.; Zayat, M. The Sol-Gel Handbook: Synthesis, Characterization and Applications; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Kuncova, G.; Guglielmi, M.; Dubina, P.; Safar, B. Lipase immobilized by sol-gel technique in layers. Collect. Czechoslov. Chem. Commun. 1995, 60, 1573–1577. [Google Scholar] [CrossRef]
- Shchipunov, Y.A. Entrapment of Biopolymers into sol—Gel-Derived Silica Nanocomposites. In Bio-Inorganic Hybrid Nanomaterials; Wiley-VCH Verlag GmbH & Co. KGaA: New York, NY, USA, 2007; pp. 75–112. [Google Scholar]
- Baca, H.K.; Carnes, E.; Singh, S.; Ashley, C.; Lopez, D.; Brinker, C.J. Cell-directed assembly of bio/nano interfaces—A new scheme for cell immobilization. Account. Chem. Res. 2007, 40, 836–845. [Google Scholar] [CrossRef] [PubMed]
- Baca, H.K.; Ashley, C.; Carnes, E.; Lopez, D.; Flemming, J.; Dunphy, D.; Singh, S.; Chen, Z.; Liu, N.G.; Fan, H.Y.; et al. Cell-directed assembly of lipid-silica nanostructures providing extended cell viability. Science 2006, 313, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Mueller, W.E.G.; Schroeder, H.C.; Burghard, Z.; Pisignano, D.; Wang, X. Silicateins-a novel paradigm in bioinorganic chemistry: Enzymatic synthesis of inorganic polymeric silica. Chem. Eur. J. 2013, 19, 5790–5804. [Google Scholar] [CrossRef] [PubMed]
- Adanyi, N.; Bori, Z.; Szendro, I.; Erdelyi, K.; Wang, X.; Schroeder, H.C.; Mueller, W.E.G. Biosilica-based immobilization strategy for label-free owls sensors. Sens. Actuators B Chem. 2013, 177, 1–7. [Google Scholar] [CrossRef]
- Polini, A.; Pagliara, S.; Camposeo, A.; Cingolani, R.; Wang, X.; Schroeder, H.C.; Mueller, W.E.G.; Pisignano, D. Optical properties of in vitro biomineralised silica. Sci. Report. 2012. [Google Scholar] [CrossRef] [PubMed]
- Jun, C.; Jeon, B.W.; Joo, J.C.; Le, Q.; Gu, S.A.; Byun, S.; Cho, D.H.; Kim, D.; Sang, B.I.; Kim, Y.H. Thermostabilization of candida antarctica lipase B by double immobilization: Adsorption on a macroporous polyacrylate carrier and R1 silaffin-mediated biosilicification. Process. Biochem. 2013, 48, 1181–1187. [Google Scholar] [CrossRef]
- Yang, S.H.; Hong, D.; Lee, J.; Ko, E.H.; Choi, I.S. Artificial spores: Cytocompatible encapsulation of individual living cells within thin, tough artificial shells. Small 2013, 9, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Korposh, S.; James, S.; Tatam, R.; Lee, S. Fibre-Optic Chemical Sensor Approaches Based on Nanoassembled Thin Films: A Challenge to Future Sensor Technology. In Current Developments in Optical Fiber Technology; Harun, S.W., Arof, H., Eds.; InTech: Rijeka, Croatia, 2013. [Google Scholar]
- Chu, C.; Lo, Y.; Sung, T. Review on recent developments of fluorescent oxygen and carbon dioxide optical fiber sensors. Photonic Sens. 2011, 1, 234–250. [Google Scholar] [CrossRef]
- Lehner, P.; Larndorfer, C.; Garcia-Robledo, E.; Larsen, M.; Borisov, S.M.; Revsbech, N.-P.; Glud, R.N.; Canfield, D.E.; Klimant, I. Lumos—A sensitive and reliable optode system for measuring dissolved oxygen in the nanomolar range. Plos One 2015, 10, e0128125. [Google Scholar] [CrossRef] [PubMed]
- Lehner, P.; Staudinger, C.; Borisov, S.M.; Regensburger, J.; Klimant, I. Intrinsic Artefacts in Optical Oxygen Sensors—How Reliable are our Measurements? Chem. Eur. J. 2015, 21, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Stahl, H.; Glud, A.; Schröder, A.C.; Klimant, I.; Tengberg, A.; Glud, R.N. Time-resolved pH imaging in marine sediments with a luminescent planar optode. Limnol. Oceanogr. Methods 2006, 4, 336–345. [Google Scholar] [CrossRef]
- Fiber Optic pH Meter, Use with Minisensors. Available online: http://www.wpiinc.com/products/physiology/ph-optica-mini-fiber-optic-ph-meter (accessed on 17 September 2015).
- Schyrr, B.; Pasche, S.; Scolan, E.; Ischer, R.; Ferrario, D.; Porchet, J.A.; Voirin, G. Development of a polymer optical fiber pH sensor for on-body monitoring application. Sens. Actuators B Chem. 2014, 194, 238–248. [Google Scholar] [CrossRef]
- Wencel, D.; Abel, T.; McDonagh, C. Optical Chemical pH Sensors. Anal. Chem. 2014, 86, 15–29. [Google Scholar] [CrossRef] [PubMed]
- 3510, 3510 and 3520 Bench pH Meters. Available online: http://www.jenway.com/product.asp?dsl=285 (accessed on 17 September 2015).
- PYROSCIENCE, Bare Fiber Oxygen Sensors. Available online: http://www.pyro-science.com/bare-fiber-optic-oxygen-sensors.html (accessed on 17 September 2015).
- Dissolved Oxygen Probe. Available online: http://www.vernier.com/products/sensors/dissolved-oxygen-probes/do-bta/ (accessed on 17 September 2015).
- Dissolved Oxygen. Available online: http://www.rbr-global.com/products/small-single-channel-loggers/149-dissolved-oxygen (accessed on 17 September 2015).
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pospíšilová, M.; Kuncová, G.; Trögl, J. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors. Sensors 2015, 15, 25208-25259. https://doi.org/10.3390/s151025208
Pospíšilová M, Kuncová G, Trögl J. Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors. Sensors. 2015; 15(10):25208-25259. https://doi.org/10.3390/s151025208
Chicago/Turabian StylePospíšilová, Marie, Gabriela Kuncová, and Josef Trögl. 2015. "Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors" Sensors 15, no. 10: 25208-25259. https://doi.org/10.3390/s151025208
APA StylePospíšilová, M., Kuncová, G., & Trögl, J. (2015). Fiber-Optic Chemical Sensors and Fiber-Optic Bio-Sensors. Sensors, 15(10), 25208-25259. https://doi.org/10.3390/s151025208