A Primer on Autonomous Aerial Vehicle Design
Abstract
:1. Introduction
2. System Design
2.1. Basic MAV Structure
2.2. Platform Controller
2.3. Attitude Controller
2.4. Position Controller
3. Quadcopter Platform Base
3.1. Brushless Motors
3.2. Battery Pack
3.3. Vision Sensor
3.4. Development Board
3.5. Microcontroller
3.6. Inertia Measurement Unit
3.7. Additional Sensors
3.8. Frame
4. Platform Vision
4.1. Stereo Camera
4.2. Microsoft Kinect
4.3. LiDAR
5. Remote Processing
5.1. Data Compression
5.2. Data Reduction
Compression Technique | Method | Compression | SD | RGB Size | Depth Size |
---|---|---|---|---|---|
Original data | 100% | 900 Kb | 600 Kb | ||
Lossless | DEFLATE | 41.12% | 2.31% | 492.6 Kb | 124.2 Kb |
bzip2 | 38.73% | 1.75% | 471.2 Kb | 110.4 Kb | |
LZMA | 36.4% | 1.98% | 438.1 Kb | 108.4 Kb | |
LZO | 61.4% | 3.47% | 675 Kb | 246.2 Kb | |
Lossy | Voxel Grid: 2 mm | 43.2% | 4.148% | 388.8 Kb | 259.2 Kb |
Voxel Grid: 10 mm | 9.48% | 0.78% | 85.32 Kb | 56.88 Kb |
6. SLAM
6.1. Probabilistic SLAM
- : This is the state vector that describes each location at each time instant. The orientation of the robot is also added to be able to differentiate different FOVs from the same location.
- : This is the control vector that contains the commands issued to move the robot from the position at time instant to the current position at time instant k.
- : This is a vector that contains the position of all of the landmarks found in the environment up until time instant k.
- : This contains the data from an observation taken of landmark i at time instant k.
- = : the history of vehicle locations.
- = : the history of command inputs.
- = : all of the landmarks in the known environment.
- = : the set of all landmark observations.
6.2. SLAM Solutions
6.3. SLAM on MAVs
6.4. SLAM Using Stereo Cameras
6.5. SLAM Using a Kinect and LiDAR
6.5.1. Local State Estimation
6.5.2. Global State Estimation
7. Navigation
8. Discussion and Recommendations
9. Conclusions
Author Contributions
Conflicts of Interest
References
- Harrison, G.J. Unmanned Aircraft Systems (UAS): Manufacturing Trends; Congressional Research Service: Washington, DC, USA, 2013. [Google Scholar]
- Finnegan, P. Public safety market offers growth for UAVs. Aerosp. Am. 2013, 51, 18–20. [Google Scholar]
- Brief, L. Growth Opportunity in Global UAV Market. Available online: www.uadrones.net/civilian/research/acrobat/1103.pdf (accessed on 20 November 2015).
- Mellinger, D.; Michael, N.; Kumar, V. Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Robot. Res. 2012, 31, 664–674. [Google Scholar] [CrossRef]
- Bouabdallah, S.; Siegwart, R. Backstepping and sliding-mode techniques applied to an indoor micro quadcopter. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 2247–2252.
- Lee, B.-Y.; Yoo, D.-W.; Tahk, M.-J. Performance comparison of three different types of attitude control systems of the quad-rotor UAV to perform flip maneuver. Int. J. Aeronaut. Space Sci. 2013, 14, 58–66. [Google Scholar] [CrossRef]
- Ryan, A.; Zennaro, M.; Howell, A.; Sengupta, R.; Hedrick, J.K. An overview of emerging results in cooperative UAV control. In Proceedings of the 43rd IEEE Conference on Decision and Control, CDC, Nassau, Bahamas, 17 December 2004; pp. 602–607.
- How, J.P.; Bethke, B.; Frank, A.; Dale, D.; Vian, J. Realtime indoor autonomous vehicle test environment. IEEE Control Syst. Mag. 2008, 28, 57–64. [Google Scholar] [CrossRef]
- Michael, N.; Fink, J.; Kumar, V. Cooperative manipulation and transportation with aerial robots. Auton. Robot. 2011, 30, 73–86. [Google Scholar] [CrossRef]
- Durrant-Whyte, H.; Rye, D.; Nebot, E. Localization of autonomous guided vehicles. In Robotics Research; Springer: London, UK, 1996; pp. 613–625. [Google Scholar]
- Bailey, T.; Durrant-Whyte, H. Simultaneous localization and mapping (SLAM): Part I. IEEE Robot. Autom. Mag. 2006, 13, 108–117. [Google Scholar] [CrossRef]
- Fraundorfer, F.; Heng, L.; Honegger, D.; Lee, G.H.; Meier, L.; Tanskanen, P.; Pollefeys, M. Vision-based autonomous mapping and exploration using a quadrotor mav. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, 7–12 October 2012; pp. 4557–4564.
- Weiss, S.; Scaramuzza, D.; Siegwart, R. Monocular slam based navigation for autonomous micro helicopters in gps denied environments. J. Field Robot. 2011, 28, 854–874. [Google Scholar] [CrossRef]
- Bachrach, A.; Prentice, S.; He, R.; Henry, P.; Huang, A.S.; Krainin, M.; Maturana, D.; Fox, D.; Roy, N. Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments. Int. J. Robot. Res. 2012, 31, 1320–1343. [Google Scholar] [CrossRef] [Green Version]
- Achtelik, M.; Achtelik, M.; Brunet, Y.; Chli, M.; Chatzichristofis, S.; Decotignie, J.-D.; Doth, K.-M.; Fraundorfer, F.; Kneip, L.; Gurdan, D. Sfly: Swarm of micro flying robots. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, 7–12 October 2012; pp. 2649–2650.
- Flores, G.; Zhou, S.; Lozano, R.; Castillo, P. A vision and gps-based real-time trajectory planning for a MAV in unknown and low-sunlight environments. J. Intell. Robot. Syst. 2014, 74, 59–67. [Google Scholar] [CrossRef]
- Wen, J.-Y.; Kreutz-Delgado, K. The attitude control problem. Autom. Control 1991, 36, 1148–1162. [Google Scholar] [CrossRef]
- Seco, F.; Prieto, C.; Guevara, J. A comparison of pedestrian dead-reckoning algorithms using a low-cost MEMS IMU. In Proceedings of the IEEE International Symposium on Intelligent Signal Processing, Budapest, Hungary, 26–28 August 2009; pp. 37–42.
- Kehoe, J.J.; Causey, R.S.; Abdulrahim, M.; Lind, R.; Grzywna, J.W.; Plew, J.; Nechyba, M.C. Waypoint navigation for a micro air vehicle using vision-based attitude estimation. Aeronaut. J. 2006, 110, 821–829. [Google Scholar]
- Guivant, J.E.; Nebot, E.M. Optimization of the simultaneous localization and map-building algorithm for real-time implementation. Robot. Autom. 2001, 17, 242–257. [Google Scholar] [CrossRef]
- Liu, H.; Bai, Y.; Lu, G.; Zhong, Y. Robust attitude control of uncertain quadrotors. IET Control Theory Appl. 2013, 7, 1583–1589. [Google Scholar] [CrossRef]
- Olson, E.; Leonard, J.; Teller, S. Fast iterative alignment of pose graphs with poor initial estimates. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 2262–2269.
- Taylor, C.N.; Veth, M.J.; Raquet, J.F.; Miller, M.M. Comparison of two image and inertial sensor fusion techniques for navigation in unmapped environments. Aerosp. Electron. Syst. 2011, 47, 946–958. [Google Scholar] [CrossRef]
- El Hamzaoui, O.; Espino, J.C.; Steux, B. Autonomous navigation and mapping with coreslam. In Recent Advances in Robotics and Automation; Springer: Berlin, Germany, 2013; pp. 91–101. [Google Scholar]
- Valencia, R.; Miró, J.V.; Dissanayake, G.; Andrade-Cetto, J. Active pose slam. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, 7–12 October 2012; pp. 1885–1891.
- Adolf, F.; Andert, F.; Rocha, J. Rapid online path planning onboard a VTOL UAV. In Proceedings of the AIAA Infotech@Aerospace Conference, Atlanta, GA, USA, 20–22 April 2010.
- Corke, P. Mobile robot vehicles. In Robotics, Vision and Control; Springer: Berlin, Germany, 2011; pp. 65–86. [Google Scholar]
- Yamauchi, B. A frontier-based approach for autonomous exploration. In Proceedings of the International Symposium on Computational Intelligence in Robotics and Automation, Monterey, CA, USA, 10–11 July 1997; pp. 146–151.
- Prentice, S.; Roy, N. The belief roadmap: Efficient planning in belief space by factoring the covariance. Int. J. Robot. Res. 2009. [Google Scholar] [CrossRef]
- Yedamale, P. Brushless DC (BLDC) Motor Fundamentals; Microchip Technology Inc.: Chandler, AZ, USA, 2003; p. 20. [Google Scholar]
- Casazza, J.; Casazza, J.; Delea, F. Understanding Electric Power Systems: An Overview of the Technology and the Marketplace; John Wiley and Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Toliyat, H.A.; Kliman, G.B. Handbook of Electric Motors; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Roberts, J.F.; Zufferey, J.-C.; Floreano, D. Energy management for indoor hovering robots. In Proceedings of the International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 1242–1247.
- Pounds, P.; Mahony, R.; Corke, P. Modelling and control of a quad-rotor robot. In Proceedings of the Australasian Conference on Robotics and Automation, Auckland, New Zealand, 6–8 December 2006.
- Achtelik, M.; Zhang, T.; Kühnlenz, K.; Buss, M. Visual tracking and control of a quadcopter using a stereo camera system and inertial sensors. In Proceedings of the International Conference on Mechatronics and Automation, Changchun, China, 9–12 August 2009; pp. 2863–2869.
- Bertozzi, M.; Broggi, A.; Conte, G.; Fascioli, A. Stereo-Vision System Performance Analysis. Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.7.2223 (accessed on 20 November 2015).
- Lemaire, T.; Berger, C.; Jung, I.K.; Lacroix, S. Vision-based slam: Stereo and monocular approaches. Int. J. Comput. Vis. 2007, 74, 343–364. [Google Scholar] [CrossRef]
- Li, F.; Yu, J.; Chai, J. A hybrid camera for motion deblurring and depth map super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8.
- Subr, K.; Bradbury, G.; Kautz, J. Two-frame stereo photography in low-light settings: A preliminary study. In Proceedings of the 9th European Conference on Visual Media Production, London, UK, 5–6 December 2012; pp. 84–93.
- Meier, L.; Tanskanen, P.; Fraundorfer, F.; Pollefeys, M. Pixhawk: A system for autonomous flight using onboard computer vision. In Proceedings of the IEEE international conference on Robotics and automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 2992–2997.
- Thrun, S.; Burgard, W.; Fox, D. A probabilistic approach to concurrent mapping and localization for mobile robots. Auton. Robot. 1998, 5, 253–271. [Google Scholar] [CrossRef]
- Burrows, M.; Wheeler, D.J. A Block-Sorting Lossless Data Compression Algorithm. Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.141.52541994 (accessed on 20 November 2015).
- Yang, E.-H.; Kieffer, J.C. Simple universal lossy data compression schemes derived from the lempel-ziv algorithm. Inf. Theory 1996, 42, 239–245. [Google Scholar] [CrossRef]
- Ng, W.K.; Choi, S.; Ravishankar, C. Lossless and lossy data compression. In Evolutionary Algorithms in Engineering Applications; Springer: Berlin, Germany, 1997; pp. 173–188. [Google Scholar]
- Deutsch, L.P. DEFLATE Compressed Data Format Specification Version 1.3. Available online: http://tools.ietf.org/html/rfc1951?ref=driverlayer.com (accessed on 20 November 2015).
- Pavlov, I. SDK (Software Development Kit) LZMA. Available online: http://www.7-zip.web.id/sdk.html2013 (accessed on 20 November 2015).
- Oberhumer, M. LZO real-time data compression library. Available online: http://www.oberhumer.com/opensource/lzo/ (accessed on 20 November 2015).
- Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D SLAM systems. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, 7–12 October 2012; pp. 573–580.
- Smith, R.C.; Cheeseman, P. On the representation and estimation of spatial uncertainty. Int. J. Robot. Res. 1986, 5, 56–68. [Google Scholar] [CrossRef]
- Durrant-Whyte, H.F. Uncertain geometry in robotics. IEEE J. Robot. Autom. 1988, 4, 23–31. [Google Scholar] [CrossRef]
- Bailey, T.; Nieto, J.; Guivant, J.; Stevens, M.; Nebot, E. Consistency of the EKF-SLAM algorithm. In Proceedings of the International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 3562–3568.
- Montemerlo, M.; Thrun, S.; Koller, D.; Wegbreit, B. Fastslam: A factored solution to the simultaneous localization and mapping problem. In Proceedings of the Eighteenth National Conference on Artificial Intelligence, Edmonton, AB, Canada, 28 July–1 August 2002; pp. 593–598.
- Bailey, T.; Nieto, J.; Nebot, E. Consistency of the fastslam algorithm. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 424–429.
- Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. Proc. SPIE 1992, 1611. [Google Scholar] [CrossRef]
- Lin, K.-H.; Chang, C.-H.; Dopfer, A.; Wang, C.-C. Mapping and localization in 3D environments using a 2D laser scanner and a stereo camera. J. Inf. Sci. Eng. 2012, 28, 131–144. [Google Scholar]
- Lin, L.-H.; Lawrence, P.D.; Hall, R. Robust outdoor stereo vision slam for heavy machine rotation sensing. Mach. Vis. Appl. 2013, 24, 205–226. [Google Scholar] [CrossRef]
- Ulrich, I.; Borenstein, J. VFH+: Reliable obstacle avoidance for fast mobile robots. In Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Leuven, Belgium, 16–20 May 1998; pp. 1572–1577.
- Carrillo, L.R.G.; López, A.E.D.; Lozano, R.; Pégard, C. Combining stereo vision and inertial navigation system for a quad-rotor UAV. J. Intell. Robot. Syst. 2012, 65, 373–387. [Google Scholar] [CrossRef]
- Brink, W.; van Daalen, C.; Brink, W. Fastslam with stereo vision. Available online: www.prasa.org/proceedings/2012/prasa2012-05.pdf (accessed on 20 November 2015).
- Estrada, C.; Neira, J.; Tardós, J.D. Hierarchical slam: Real-time accurate mapping of large environments. Robotics 2005, 21, 588–596. [Google Scholar] [CrossRef]
- Alessandretti, A.; Aguiar, A.P.; Hespanha, J.P.; Valigi, P. A minimum energy solution to monocular simultaneous localization and mapping. In Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL, USA, 12–15 December 2011; pp. 4566–4571.
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Tuytelaars, T.; van Gool, L. Surf: Speeded up robust features. In Computer Vision–ECCV 2006; Springer: Berlin, Germany, 2006; pp. 404–417. [Google Scholar]
- Rosten, E.; Drummond, T. Machine learning for high-speed corner detection. In Computer Vision—ECCV 2006; Springer: Berlin, Germany, 2006; pp. 430–443. [Google Scholar]
- Endres, F.; Hess, J.; Engelhard, N.; Sturm, J.; Cremers, D.; Burgard, W. An evaluation of the RGB-D SLAM system. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, MN, USA, 14–18 May 2012; pp. 1691–1696.
- Mei, C.; Sibley, G.; Cummins, M.; Newman, P.M.; Reid, I.D. A constant-time efficient stereo slam system. In Proceedings of the 20th British Machine Vision Conference, London, UK, 7–10 September 2009; pp. 1–11.
- Rusu, R.B.; Blodow, N.; Marton, Z.C.; Beetz, M. Aligning point cloud views using persistent feature histograms. In Proceedings of the International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3384–3391.
- Howard, A. Real-time stereo visual odometry for autonomous ground vehicles. In Proceedings of the International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3946–3952.
- Nowicki, M.; Skrzypczyński, P. Robust registration of kinect range data for sensor motion estimation. In Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013, Milkow, Poland, 27–29 May 2013; pp. 835–844.
- Li, Y.; Olson, E.B. Extracting general-purpose features from LIDAR data. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, 3–7 May 2010; pp. 1388–1393.
- Ling, L.; Cheng, E.; Burnett, I.S. An Iterated Extended Kalman Filter for 3D mapping via Kinect camera. In Proceedings of the 2013 IEEE International Conference on Speech and Signal Processing (ICASSP), Vancouver, BC, USA, 26–31 May 2013; pp. 1773–1777.
- Boor, V.; Overmars, M.H. The gaussian sampling strategy for probabilistic roadmap planners. In Proceedings of the 1999 IEEE international conference on Robotics and automation, Detroit, MI, USA, 10–15 May 1999; pp. 1018–1023.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coppejans, H.H.G.; Myburgh, H.C. A Primer on Autonomous Aerial Vehicle Design. Sensors 2015, 15, 30033-30061. https://doi.org/10.3390/s151229785
Coppejans HHG, Myburgh HC. A Primer on Autonomous Aerial Vehicle Design. Sensors. 2015; 15(12):30033-30061. https://doi.org/10.3390/s151229785
Chicago/Turabian StyleCoppejans, Hugo H. G., and Herman C. Myburgh. 2015. "A Primer on Autonomous Aerial Vehicle Design" Sensors 15, no. 12: 30033-30061. https://doi.org/10.3390/s151229785
APA StyleCoppejans, H. H. G., & Myburgh, H. C. (2015). A Primer on Autonomous Aerial Vehicle Design. Sensors, 15(12), 30033-30061. https://doi.org/10.3390/s151229785