Adjusting Spectral Indices for Spectral Response Function Differences of Very High Spatial Resolution Sensors Simulated from Field Spectra
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Spectral Convolution
Sensor (Abbreviation) | Spatial Resolution | Spectral Type | Spectral Resolution | Bands | Platform |
---|---|---|---|---|---|
ASD FieldSpec Pro spectrometer | Dependent on height of sensor (non-imaging) | hyper | narrow (2–3 nm) | 2151 contiguous bands between 350–2500 nm | ground |
Tetracam Mini-MCA (TC10) [33] * | 10 s to 100 s mm (dependent on height of sensor) | multi | narrow (10 nm) | 6 bands between 520–910 nm | UAV/airplane |
HyMap [34] | Dependent on height of sensor | hyper | narrow (15–20 nm) | 128 contiguous bands between 450–2500 nm | airplane |
Tetracam Mini-MCA (TC05) [33] * | 10 s to 100 s mm (dependent on height of sensor) | multi | narrow (10–20 nm) | 6 bands between 430–790 nm | UAV/airplane |
RapidEye [35] | 5 m | multi | broad (40–90 nm) | 5 bands between 440–850 nm | satellite |
IKONOS [36] | 3.2 m | multi | broad (66–96 nm) | 4 bands between 445–853 nm | satellite |
GeoEye-1 [36] | 1.65 m | multi | broad (35–140 nm) | 4 bands between 450–900 nm | satellite |
WorldView-3 (WV3) [37] | 1.24 m | multi | broad (40–180 nm) | 8 bands between 400–1040 nm | satellite |
WorldView-2 (WV2) [38] | 2 m (resampled) | multi | broad (40–180 nm) | 8 bands between 400–1040 nm | satellite |
Pléiades-1 [39] | 2 m | multi | broad (120–200 nm) | 4 bands between 430–940 nm | satellite |
QuickBird (QB) [40] | 2.62 m | multi | broad (115–203 nm) | 4 bands between 430–918 nm | satellite |
2.3. Indices
2.4. Analysis
2.4.1. Comparison to Original ASD Index Values
2.4.2. Correlation to Dike Quality Indicators
3. Results and Discussion
3.1. Comparison to Original ASD Index Values
1:1R2 | ||||||||||
Index | TC10 | HyMap | TC05 | RapidEye | IKONOS | GeoEye | WV3 | WV2 | Pléiades | QB |
ARI | 0.576 | −3.853 | −0.624 | −14.216 | NA | NA | −34.998 | −28.234 | NA | NA |
BGI2 | NA | 0.944 | 0.646 | −0.260 | −8.842 | −1.320 | −3.378 | −0.670 | −10.049 | −7.247 |
CTR1 | NA | NA | 0.378 | −4.199 | NA | NA | −47.760 | −40.060 | NA | NA |
DVI | 0.966 | 0.999 | 0.983 | 0.993 | 0.877 | 1.000 | 0.986 | 1.000 | 0.995 | 0.958 |
GEMI | 0.972 | 1.000 | 0.986 | 0.994 | 0.887 | 1.000 | 0.988 | 1.000 | 0.995 | 0.962 |
MSR | 0.860 | 0.734 | 0.773 | 0.613 | −0.450 | 0.716 | 0.177 | 0.625 | 0.039 | 0.085 |
Slope | ||||||||||
Index | TC10 | HyMap | TC05 | RapidEye | IKONOS | GeoEye | WV3 | WV2 | Pléiades | QB |
ARI | 0.616 | −0.176 | 0.486 | −1.135 | NA | NA | −2.000 | −1.715 | NA | NA |
BGI2 | NA | 1.019 | 1.012 | 0.953 | 0.594 | 0.967 | 0.848 | 0.984 | 0.544 | 0.693 |
CTR1 | NA | NA | 0.670 | 0.186 | NA | NA | 0.423 | 0.489 | NA | NA |
DVI | 1.058 | 1.012 | 0.959 | 0.971 | 0.859 | 1.009 | 0.953 | 0.999 | 0.974 | 0.920 |
GEMI | 1.004 | 1.005 | 1.001 | 0.994 | 0.909 | 0.998 | 0.961 | 0.998 | 0.965 | 0.956 |
MSR | 0.868 | 0.849 | 0.886 | 0.757 | 0.423 | 0.810 | 0.567 | 0.747 | 0.500 | 0.542 |
Intercept | ||||||||||
Index | TC10 | HyMap | TC05 | RapidEye | IKONOS | GeoEye | WV3 | WV2 | Pléiades | QB |
ARI | 2.071 | 7.105 | 4.196 | 12.547 | NA | NA | 19.477 | 17.531 | NA | NA |
BGI2 | NA | 0.008 | 0.039 | 0.103 | 0.406 | 0.126 | 0.220 | 0.102 | 0.441 | 0.344 |
CTR1 | NA | NA | 1.312 | 3.520 | NA | NA | 6.547 | 5.983 | NA | NA |
DVI | 0.003 | −0.001 | −0.001 | −0.001 | −0.001 | 0.000 | 0.000 | −0.001 | −0.001 | −0.001 |
GEMI | 0.019 | −0.001 | −0.015 | −0.006 | 0.014 | 0.004 | 0.010 | 0.000 | 0.014 | 0.002 |
MSR | −0.064 | −0.179 | −0.238 | −0.038 | 0.251 | −0.087 | 0.183 | 0.003 | 0.301 | 0.199 |
Normalized Intercept | ||||||||||
Index | TC10 | HyMap | TC05 | RapidEye | IKONOS | GeoEye | WV3 | WV2 | Pléiades | QB |
ARI | 1.460 | 5.010 | 2.958 | 8.846 | NA | NA | 12.361 | 12.361 | NA | NA |
BGI2 | NA | 0.018 | 0.090 | 0.239 | 0.942 | 0.292 | 0.236 | 0.236 | 1.023 | 0.798 |
CTR1 | NA | NA | 0.532 | 1.426 | NA | NA | 2.425 | 2.425 | NA | NA |
DVI | 0.012 | −0.003 | −0.004 | −0.004 | −0.004 | −0.001 | −0.004 | −0.004 | −0.004 | −0.004 |
GEMI | 0.029 | −0.001 | −0.024 | −0.010 | 0.021 | 0.006 | 0.000 | 0.000 | 0.022 | 0.003 |
MSR | −0.026 | −0.071 | −0.095 | −0.015 | 0.100 | −0.035 | 0.001 | 0.001 | 0.120 | 0.079 |
ccR2 | ||||||||||
Index | TC10 | HyMap | TC05 | RapidEye | IKONOS | GeoEye | WV3 | WV2 | Pléiades | QB |
ARI | 0.910 | 0.067 | 0.654 | 0.489 | NA | NA | 0.556 | 0.528 | NA | NA |
BGI2 | NA | 0.991 | 0.997 | 0.984 | 0.978 | 0.946 | 0.990 | 0.962 | 0.972 | 0.989 |
CTR1 | NA | NA | 0.785 | 0.035 | NA | NA | 0.024 | 0.040 | NA | NA |
DVI | 0.994 | 1.000 | 0.995 | 0.999 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
GEMI | 0.995 | 1.000 | 0.997 | 0.999 | 0.998 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
MSR | 0.998 | 0.999 | 0.999 | 0.999 | 0.989 | 0.999 | 0.996 | 0.999 | 0.992 | 0.995 |
3.2. Correlation to Quality Indicators
3.2.1. Soil Moisture
3.2.2. Cover Quality
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Steven, M.D.; Malthus, T.J.; Baret, F.; Xu, H.; Chopping, M.J. Intercalibration of vegetation indices from different sensor systems. Remote Sens. Environ. 2003, 88, 412–422. [Google Scholar] [CrossRef]
- Soudani, K.; Francois, C.; le Maire, G.; le Dantec, V.; Dufrene, E. Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands. Remote Sens. Environ. 2006, 102, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Van Leeuwen, W.J.D.; Orr, B.J.; Marsh, S.E.; Herrmann, S.M. Multi-sensor NDVI data continuity: Uncertainties and implications for vegetation monitoring applications. Remote Sens. Environ. 2006, 100, 67–81. [Google Scholar] [CrossRef]
- Teillet, P.M.; Staenz, K.; Williams, D.J. Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions. Remote Sens. Environ. 1997, 61, 139–149. [Google Scholar] [CrossRef]
- Pandya, M.R.; Singh, R.P.; Chaudhari, K.N.; Murali, K.R.; Kirankumar, A.S.; Dadhwal, V.K.; Parihar, J.S. Spectral characteristics of sensors onboard IRS-1d and P6 satellites: Estimation and their influence on surface reflectance and NDVI. J. Indian Soc. Remote Sens. 2007, 35, 333–350. [Google Scholar] [CrossRef]
- Chander, G.; Mishra, N.; Helder, D.L.; Aaron, D.B.; Angal, A.; Choi, T.; Xiong, X.; Doelling, D.R. Applications of spectral band adjustment factors (SBAF) for cross-calibration. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1267–1281. [Google Scholar] [CrossRef]
- Teillet, P.M.; Fedosejevs, G.; Thome, K.J.; Barker, J.L. Impacts of spectral band difference effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral domain. Remote Sens. Environ. 2007, 110, 393–409. [Google Scholar] [CrossRef]
- D’Odorico, P.; Gonsamo, A.; Damm, A.; Schaepman, M.E. Experimental evaluation of Sentinel-2 spectral response functions for NDVI time-series continuity. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1336–1348. [Google Scholar] [CrossRef]
- Gonsamo, A.; Chen, J.M. Spectral response function comparability among 21 satellite sensors for vegetation monitoring. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1319–1335. [Google Scholar] [CrossRef]
- Trishchenko, A.P.; Cihlar, J.; Li, Z.Q. Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors. Remote Sens. Environ. 2002, 81, 1–18. [Google Scholar] [CrossRef]
- Du, P.J.; Zhang, H.P.; Yuan, L.S.; Liu, P.; Zhang, H.R. Comparison of vegetation index from ASTER, CBERS and Landsat ETM. In Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2007), Barcelona, Spain, 23–27 July 2007; pp. 3341–3344.
- Gallo, K.; Li, L.; Reed, B.; Eidenshink, J.; Dwyer, J. Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data. Remote Sens. Environ. 2005, 99, 221–231. [Google Scholar] [CrossRef]
- Teillet, P.M.; Ren, X.M. Spectral band difference effects on vegetation indices derived from multiple satellite sensor data. Can. J. Remote Sens. 2008, 34, 159–173. [Google Scholar]
- Milesi, C.; Running, S.W.; Elvidge, C.D.; Dietz, J.B.; Tuttle, B.T.; Nemani, R.R. Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environ. Manag. 2005, 36, 426–438. [Google Scholar] [CrossRef]
- FAO. FAOSTAT (Food and Agriculture Organization of the United Nations Statistics Division). Resources—Land: Online Database, 2011. Available online: http://faostat3.fao.org/faostat-gateway/go/to/home/E (accessed on 14 May 2014).
- Knoeff, J.G.; Vastenburg, E.W.; Tromp, E. Rational risk assessment of dikes by using a stochastic subsurface model. In Proceedings of the 4th International Symposium on Flood Defence, Toronto, ON, Canada, 6–8 May 2008.
- Verheij, H.J.; Kruse, G.A.M.; Niemeijer, J.H.; Sprangers, J.T.C.M.; de Smidt, J.T.; Wondergem, P.J.M. Erosion Resistance of Grassland as Dike Covering; Technical Advisory Committee for Flood Defence in The Netherlands (TAW): Delft, The Netherlands, 1997; p. 49. [Google Scholar]
- Baghzouz, M.; Devitt, D.A.; Morris, R.L. Evaluating temporal variability in the spectral reflectance response of annual ryegrass to changes in nitrogen applications and leaching fractions. Int. J. Remote Sens. 2006, 27, 4137–4157. [Google Scholar] [CrossRef]
- Dettman-Kruse, J.K.; Christians, N.E.; Chaplin, M.H. Predicting soil water content through remote sensing of vegetative characteristics in a turfgrass system. Crop Sci. 2008, 48, 763–770. [Google Scholar] [CrossRef]
- Metternicht, G. Vegetation indices derived from high-resolution airborne videography for precision crop management. Int. J. Remote Sens. 2003, 24, 2855–2877. [Google Scholar] [CrossRef]
- Cundill, S.L.; van der Meijde, M.; Hack, H.R.G.K. Investigation of remote sensing for potential use in dike inspection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 733–746. [Google Scholar] [CrossRef]
- Hossain, A.; Easson, G.; Hasan, K. Detection of levee slides using commercially available remotely sensed data. Environ. Eng. Geosci. 2006, 12, 235–246. [Google Scholar] [CrossRef]
- Potts, D.R.; Mackin, S.; Muller, J.P.; Fox, N. Sensor intercalibration over Dome C for the ESA GlobAlbedo project. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1139–1146. [Google Scholar] [CrossRef]
- Miura, T.; Turner, J.P.; Huete, A.R. Spectral compatibility of the NDVI across VIIRS, MODIS, and AVHRR: An analysis of atmospheric effects using EO-1 Hyperion. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1349–1359. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Fitz-Rodriguez, E.; Choi, C.Y. Monitoring turfgrass quality using multispectral radiometry. Trans. ASAE 2002, 45, 865–871. [Google Scholar]
- Taghvaeian, S.; Chávez, J.; Hattendorf, M.; Crookston, M. Optical and thermal remote sensing of turfgrass quality, water stress, and water use under different soil and irrigation treatments. Remote Sens. 2013, 5, 2327–2347. [Google Scholar] [CrossRef]
- Xu, H.Q.; Zhang, T.J. Cross comparison of ASTER and Landsat ETM plus multispectral measurements for NDVI and SAVI vegetation indices. Spectrosc. Spectr. Anal. 2011, 31, 1902–1907. [Google Scholar]
- Forestier, G.; Inglada, J.; Wemmert, C.; Gancarski, P. Comparison of optical sensors discrimination ability using spectral libraries. Int. J. Remote Sens. 2013, 34, 2327–2349. [Google Scholar] [CrossRef]
- Franke, J.; Heinzel, V.; Menz, G. Assessment of NDVI-differences caused by sensor-specific relative spectral response functions. In Proceedings of IEEE International Conference on Geoscience and Remote Sensing Symposium (IGARSS 2006), Denver, CO, USA, 31 July–4 August 2006; pp. 1138–1141.
- Huang, W.; Huang, J.; Wang, X.; Wang, F.; Shi, J. Comparability of red/near-infrared reflectance and NDVI based on the spectral response function between MODIS and 30 other satellite sensors using rice canopy spectra. Sensors 2013, 13, 16023–16050. [Google Scholar] [CrossRef] [PubMed]
- Trishchenko, A.P.; Cihlar, J.; Li, Z.Q.; Hwang, B. Long-term monitoring of surface reflectance, NDVI and clouds from space: What contribution we can expect due to effect of instrument spectral response variations? Proc. SPIE 2002, 4815. [Google Scholar] [CrossRef]
- Mini-MCA: Tetracam’s Miniature Multiple Camera Array. Available online: http://www.tetracam.com/Products-Mini_MCA.htm (accessed on 25 May 2013).
- HyMap. Available online: http://www.hyvista.com/?page_id=440 (accessed on 25 May 2013).
- RapidEye Products. Available online: http://www.rapideye.com/products/index.htm (accessed on 25 May 2013).
- GeoEye Constallation. Available online: http://www.geoeye.com/CorpSite/assets/docs/brochures/GeoEye_Constellation.pdf (accessed on 25 May 2013).
- WorldView-3 Datasheet. Available online: http://www.digitalglobe.com/downloads/WorldView3-DS-WV3-Web.pdf (accessed on 17 July 2013).
- WorldView-2 Datasheet. Available online: https://www.digitalglobe.com/downloads/WorldView2-DS-WV2-Web.pdf (accessed on 25 May 2013).
- Pléiades Products. Available online: http://www.astrium-geo.com/en/3027-pleiades-50-cm-resolution-products (accessed on 25 May 2013).
- QuickBird Datasheet. Available online: https://www.digitalglobe.com/downloads/QuickBird-DS-QB-Web.pd (accessed on 25 May 2013).
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Kim, Y.; Glenn, D.M.; Park, J.; Ngugi, H.K.; Lehman, B.L. Hyperspectral image analysis for plant stress detection. In Proceedings of the American Society of Agricultural and Biological Engineers Annual International Meeting, Pittsburgh, PA, USA, 20–23 June 2010; pp. 3512–3524.
- Rodríguez-Pérez, J.R.; Riaño, D.; Carlisle, E.; Ustin, S.L.; Smart, D.R. Evaluation of hyperspectral reflectance indexes to detect grapevine water status in vineyards. Am. J. Enol. Vitic. 2007, 58, 302–317. [Google Scholar]
- Kross, A.; McNairn, H.; Lapen, D.; Sunohara, M.; Champagne, C. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. 2015, 34, 235–248. [Google Scholar] [CrossRef]
- Waser, L.T.; Kuchler, M.; Jutte, K.; Stampfer, T. Evaluating the potential of WorldView-2 data to classify tree species and different levels of ash mortality. Remote Sens. 2014, 6, 4515–4545. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Chen, Z.K. Comparison of broad-band and narrow-band red and near-infrared vegetation indexes. Remote Sens. Environ. 1995, 54, 38–48. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; de Pauw, E. Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization. Photogramm. Eng. Remote Sens. 2002, 68, 607–621. [Google Scholar]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2000, 76, 156–172. [Google Scholar] [CrossRef]
- Yao, X.; Yao, X.; Jia, W.; Tian, Y.; Ni, J.; Cao, W.; Zhu, Y. Comparison and intercalibration of vegetation indices from different sensors for monitoring above-ground plant nitrogen uptake in winter wheat. Sensors 2013, 13, 3109–3130. [Google Scholar] [CrossRef] [PubMed]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models Part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Rooney, N. Least Squares and Their Applications; Library Press: Delhi, India, 2012; pp. 39–49. [Google Scholar]
- Horler, D.N.H.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Trishchenko, A.P. Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors: Extension to AVHRR NOAA-17,18 and METOP-A. Remote Sens. Environ. 2009, 113, 335–341. [Google Scholar] [CrossRef]
- Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Dungan, J.L. Scaling up and scaling down: The relevance of the support effect on remote sensing of vegetation. In Modelling Scale in Geographical Information Science; Tate, N.J., Atkinson, P.M., Eds.; John Wiley and Sons: Chichester, UK, 2001; pp. 221–236. [Google Scholar]
- Wong, D. The modifiable areal unit problem (MAUP). In The SAGE Handbook of Spatial Analysis; Fotheringham, A.S., Rogerson, P.A., Eds.; SAGE Publications: London, UK, 2009; pp. 105–124. [Google Scholar]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective,, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2007; p. 592. [Google Scholar]
- Lee, K.-S.; Kook, M.-J.; Shin, J.-I.; Kim, S.-H.; Kim, T.-G. Spectral characteristics of forest vegetation in moderate drought condition observed by laboratory measurements and spaceborne hyperspectral data. Photogramm. Eng. Remote Sens. 2007, 73, 1121–1127. [Google Scholar] [CrossRef]
- Carter, G.A. Responses of leaf spectral reflectance to plant stress. Am. J. Bot. 1993, 80, 239–243. [Google Scholar] [CrossRef]
- Asner, G.P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 1998, 64, 234–253. [Google Scholar] [CrossRef]
- Zhao, D.H.; Huang, L.M.; Li, J.L.; Qi, J.G. A comparative analysis of broadband and narrowband derived vegetation indices in predicting LAI and CCD of a cotton canopy. ISPRS J. Photogramm. Remote Sens. 2007, 62, 25–33. [Google Scholar] [CrossRef]
- Yoder, B.J.; Waring, R.H. The normalized difference vegetation index of small douglas-fir canopies with varying chlorophyll concentrations. Remote Sens. Environ. 1994, 49, 81–91. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cundill, S.L.; Van der Werff, H.M.A.; Van der Meijde, M. Adjusting Spectral Indices for Spectral Response Function Differences of Very High Spatial Resolution Sensors Simulated from Field Spectra. Sensors 2015, 15, 6221-6240. https://doi.org/10.3390/s150306221
Cundill SL, Van der Werff HMA, Van der Meijde M. Adjusting Spectral Indices for Spectral Response Function Differences of Very High Spatial Resolution Sensors Simulated from Field Spectra. Sensors. 2015; 15(3):6221-6240. https://doi.org/10.3390/s150306221
Chicago/Turabian StyleCundill, Sharon L., Harald M. A. Van der Werff, and Mark Van der Meijde. 2015. "Adjusting Spectral Indices for Spectral Response Function Differences of Very High Spatial Resolution Sensors Simulated from Field Spectra" Sensors 15, no. 3: 6221-6240. https://doi.org/10.3390/s150306221
APA StyleCundill, S. L., Van der Werff, H. M. A., & Van der Meijde, M. (2015). Adjusting Spectral Indices for Spectral Response Function Differences of Very High Spatial Resolution Sensors Simulated from Field Spectra. Sensors, 15(3), 6221-6240. https://doi.org/10.3390/s150306221