The Application of a Piezo-Resistive Cardiorespiratory Sensor System in an Automobile Safety Belt
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Theoretical Modelling and Qualitative Validation of Sensor Characteristic Curve
- tunnel current density;
- electron mass;
- height of potential barrier;
- inter particle separation;
- electron charge;
- Planck’s constant;
- voltage supplied.
Symbol | Parameter | Units |
---|---|---|
Diameter of copper particle | nm | |
Filler volume fraction | no units | |
Stress applied on piezo-resistive material | g·cm−2 | |
Compressive modulus | g·cm−2 | |
m−1 |
3.2. Calculation of Parameters
Parameter | Numerical Value |
---|---|
Electron mass (m) | 9.10938291 × 10−31 kg |
Filler volume fraction () | 4.96 × 10−2 |
Height of potential barrier between the adjacent particles () | 0.55 eV |
Copper particle diameter () | 50 nm |
3.3. Validation of Results
3.4. Cardiorespiratory Signals
Position of Sensor | Breathing Signals (Ω) | Heart Signals (Ω) |
---|---|---|
Thorax | 200–400 | 2~6 |
Abdomen | 700–900 | n/a |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stoppa, M.; Chiolerio, A. Wearable electronics and smart textiles: A critical review. Sensors 2014, 14, 11957–11992. [Google Scholar] [CrossRef] [PubMed]
- Bonato, P. Wearable sensors/systems and their impact on biomedical engineering. IEEE Eng. Med. Biol. Mag. 2003, 22, 18–20. [Google Scholar] [CrossRef]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Pantelopoulos, A.; Bourbakis, N.G. A survey on wearable sensor-based systems for health monitoring and prognosis. Syst. Man Cybern. Part C 2010, 40, 1–12. [Google Scholar] [CrossRef]
- Wheeldon, N.M.; Macdonald, T.M.; Flucker, C.J.; Mckendrick, A.D.; Mcdevitt, D.G.; Struthers, A.D. Echocardiography in chronic heart failure in the community. QJM 1993, 86, 17–23. [Google Scholar] [PubMed]
- Witt, J.; Narbonneau, F.; Schukar, M.; Krebber, K.; de Jonckheere, J.; Jeanne, M.; Kinet, D.; Paquet, B.; Depre, A.; D’Angelo, L.T.; et al. Medical textiles with embedded fiber optic sensors for monitoring of respiratory movement. IEEE Sens. J. 2012, 12, 246–254. [Google Scholar] [CrossRef]
- Niizeki, K.; Nishidate, I.; Uchida, K.; Kuwahara, M. Unconstrained cardiorespiratory and body movement monitoring system for home care. Med. Biol. Eng. Comput. 2005, 43, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Moon, R.Y.; Fu, L.Y. Sudden infant death syndrome. Pediatr. Rev. 2007, 28, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Jiang, Z. A novel wearable sensor device with conductive fabric and pvdf film for monitoring cardiorespiratory signals. Sens. Actuators A Phys. 2006, 128, 317–326. [Google Scholar]
- Mccraty, R.; Atkinson, M.; Tiller, W.A.; Rein, G.; Watkins, A.D. The effects of emotions on short-term power spectrum analysis of heart rate variability. Am. J. Cardiol. 1995, 76, 1089–1093. [Google Scholar] [CrossRef] [PubMed]
- Appelhans, B.M.; Luecken, L.J. Heart rate variability as an index of regulated emotional responding. Rev. Gen. Psychol. 2006, 10, 229. [Google Scholar] [CrossRef]
- Falkner, B.; Onesti, G.; Angelakos, E.T.; Fernandes, M.; Langman, C. Cardiovascular response to mental stress in normal adolescents with hypertensive parents. Hemodynamics and mental stress in adolescents. Hypertension 1979, 1, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Ritz, T.; Steptoe, A.; Dewilde, S.; Costa, M. Emotions and stress increase respiratory resistance in asthma. Psychosom. Med. 2000, 62, 401–412. [Google Scholar] [CrossRef] [PubMed]
- The World Bank Group. Motor Vehicles (per 1000 People). Available online: http://data.worldbank.org/indicator/IS.VEH.NVEH.P3 (accessed on 4 April 2013).
- Rajala, S.; Lekkala, J. Film-type sensor materials pvdf and emfi in measurement of cardiorespiratory signals—A review. IEEE Sens. J. 2012, 12, 439–446. [Google Scholar] [CrossRef]
- Catrysse, M.; Puers, R.; Hertleer, C.; van Langenhove, L.; van Egmond, H.; Matthys, D. Towards the integration of textile sensors in a wireless monitoring suit. Sens. Actuators A Phys. 2004, 114, 302–311. [Google Scholar] [CrossRef]
- Witt, J.; Krebber, K.; Demuth, J.; Sasek, L. Fiber Optic Heart Rate Sensor for Integration into Personal Protective Equipment. In Proceedings of the 2011 International Workshop on BioPhotonics, Parma, Italy, 8–10 June 2011; pp. 1–3.
- Aarts, R.M. Monitoring Apparatus for Monitoring a User’s Heart Rate and/or Heart Rate variation; Wristwatch Comprising such a Monitoring Apparatus. U.S. Patent 8,260,405 B2, 23 October 2008. [Google Scholar]
- Mukherjee, S.; Breakspear, R.; Connor, S.D. Wireless, non-contact driver’s ECG monitoring system. In Proceedings of the Conference on Wireless Health, La Jolla, CA, USA, 22–25 October 2012.
- Wang, F.; Tanaka, M.; Chonan, S. Development of a pvdf piezopolymer sensor for unconstrained in-sleep cardiorespiratory monitoring. J. Intell. Mater. Syst. Struct. 2003, 14, 185–190. [Google Scholar] [CrossRef]
- Paradiso, R.; Loriga, G.; Taccini, N. A wearable health care system based on knitted integrated sensors. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Scilingo, E.P.; Gemignani, A.; Paradiso, R.; Taccini, N.; Ghelarducci, B.; de Rossi, D. Performance evaluation of sensing fabrics for monitoring physiological and biomechanical variables. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Gopalsamy, C.; Park, S.; Rajamanickam, R.; Jayaraman, S. The wearable motherboard™: The first generation of adaptive and responsive textile structures (arts) for medical applications. Virtual Real. 1999, 4, 152–168. [Google Scholar] [CrossRef]
- Lei, W.; Lo, B.P.L.; Yang, G.Z. Multichannel reflective PPG earpiece sensor with passive motion cancellation. IEEE Trans. Biomed. Circuits Syst. 2007, 1, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, R.R.; Kulkarni, S. Clip-on Wireless Wearable Microwave Sensor for Ambulatory Cardiac Monitoring. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Buenos Aires, Argentina, 31 August–4 September 2010; pp. 365–369.
- Lanata, A.; Scilingo, E.P.; de-Rossi, D. A multimodal transducer for cardiopulmonary activity monitoring in emergency. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 817–825. [Google Scholar] [CrossRef]
- Nishyama, M.; Miyamoto, M.; Watanabe, K. Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity. J Biomed Opt. 2011, 16, 017002–017007. [Google Scholar] [CrossRef] [PubMed]
- Kärki, S.; Lekkala, J. A new method to measure heart rate with emfi and pvdf materials. J. Med. Eng. Technol. 2009, 33, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.W.; Jang, Y.W.; Lee, I.; Shin, S.; Kim, S. Wearable respiratory rate monitoring using piezo-resistive fabric sensor. In World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009, Munich, Germany; Dössel, O., Schlegel, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 25/5, pp. 282–284. [Google Scholar]
- Kang, T.-H. Textile-Embedded Sensors for Wearable Physiological Monitoring Systems. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2007. [Google Scholar]
- Chiolerio, A.; Roppolo, I.; Sangermano, M. Radical diffusion engineering: Tailored nanocomposite materials for piezoresistive inkjet printed strain measurement. RSC Adv. 2013, 3, 3446–3452. [Google Scholar] [CrossRef]
- Knite, M.; Teteris, V.; Polyakov, B.; Erts, D. Electric and elastic properties of conductive polymeric nanocomposites on macro- and nanoscales. Mater. Sci. Eng. 2002, 19, 15–19. [Google Scholar] [CrossRef]
- Stampfer, C.; Jungen, A.; Linderman, R.; Obergfell, D.; Roth, S.; Hierold, C. Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. Nano Lett. 2006, 6, 1449–1453. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, V.G.; Ponomarenko, A.T.; Klason, C. Strain sensitive polymer composite material. Smart Mater. Struct. 1995, 4, 31. [Google Scholar] [CrossRef]
- Chiolerio, A.; Sangermano, M. In situ synthesis of ag-acrylic nanocomposites: Tomography-based percolation model, irreversible photoinduced electromigration and reversible electromigration. Mater. Sci. Eng. 2012, 177, 373–380. [Google Scholar] [CrossRef]
- Lux, F. Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. J. Mater. Sci. 1993, 28, 285–301. [Google Scholar] [CrossRef]
- Celzard, A.; Mcrae, E.; Marêché, J.F.; Furdin, G.; Sundqvist, B. Conduction mechanisms in some graphite–polymer composites: Effects of temperature and hydrostatic pressure. J. Appl. Phys. 1998, 83, 1410–1419. [Google Scholar] [CrossRef]
- Yoshikawa, S.; Ota, T.; Newnham, R.; Amin, A. Piezoresistivity in polymer-ceramic composites. J. Am. Ceram. Soc. 1990, 73, 263–267. [Google Scholar] [CrossRef]
- Pramanik, P.; Khastgir, D.; De, S.; Saha, T. Pressure-sensitive electrically conductive nitrile rubber composites filled with particulate carbon black and short carbon fibre. J. Mater. Sci. 1990, 25, 3848–3853. [Google Scholar] [CrossRef]
- Knite, M.; Teteris, V.; Kiploka, A.; Kaupuzs, J. Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials. Sens. Actuators A Phys. 2004, 110, 142–149. [Google Scholar] [CrossRef]
- Pham, G.T.; Park, Y.-B.; Liang, Z.; Zhang, C.; Wang, B. Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Compos. Part B 2008, 39, 209–216. [Google Scholar] [CrossRef]
- Hu, N.; Karube, Y.; Arai, M.; Watanabe, T.; Yan, C.; Li, Y.; Liu, Y.; Fukunaga, H. Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 2010, 48, 680–687. [Google Scholar] [CrossRef]
- Zhang, X.-W.; Pan, Y.; Zheng, Q.; Yi, X.-S. Time dependence of piezoresistance for the conductor-filled polymer composites. J. Polymer Sci. Part B 2000, 38, 2739–2749. [Google Scholar] [CrossRef]
- Simmons, J.G. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 1963, 34, 2581–2590. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Li, Y. Relation between repeated uniaxial compressive pressure and electrical resistance of carbon nanotube filled silicone rubber composite. Compos. Part A 2012, 43, 268–274. [Google Scholar] [CrossRef]
- Sheng, P. Fluctuation-induced tunneling conduction in disordered materials. Phys. Rev. B 1980, 21, 2180–2195. [Google Scholar] [CrossRef]
- Sensingtex Sensor Textile. Available online: http://www.sensingtex.com/ (accessed on 7 July 2013).
- Summerscales, J. Fibre Volume Fraction (vf). Available online: http://www.tech.plym.ac.uk/sme/MATS324/MATS324A1%20basics.htm#Vf (accessed on 29 August 2013).
- Tsuya, H.; Huff, H.R.; Gösele, U. Silicon Materials Science and Technology, 1998; The Electrochemical Society: Pennington, NJ, USA, 1998; p. 962. [Google Scholar]
- Istratov, A.; Hedermann, H.; Seibt, M.; Vyvenko, O.; Schröter, W.; Flink, C.; Heiser, T.; Hieslmair, H.; Weber, E. Electrical and Recombination Properties of Precipitated and Interstitial Copper in Silicon; Electrochemical Society: Pennington, NJ, USA, 1998; p. 948. [Google Scholar]
- Paalasmaa, J.; Ranta, M. Detecting Heartbeats in the Ballistocardiogram with Clustering. In Proceedings of the ICML/UAI/COLT 2008 Workshop on Machine Learning for Health-Care Applications, Helsinki, Finland, 9 July 2008.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamdani, S.T.A.; Fernando, A. The Application of a Piezo-Resistive Cardiorespiratory Sensor System in an Automobile Safety Belt. Sensors 2015, 15, 7742-7753. https://doi.org/10.3390/s150407742
Hamdani STA, Fernando A. The Application of a Piezo-Resistive Cardiorespiratory Sensor System in an Automobile Safety Belt. Sensors. 2015; 15(4):7742-7753. https://doi.org/10.3390/s150407742
Chicago/Turabian StyleHamdani, Syed Talha Ali, and Anura Fernando. 2015. "The Application of a Piezo-Resistive Cardiorespiratory Sensor System in an Automobile Safety Belt" Sensors 15, no. 4: 7742-7753. https://doi.org/10.3390/s150407742
APA StyleHamdani, S. T. A., & Fernando, A. (2015). The Application of a Piezo-Resistive Cardiorespiratory Sensor System in an Automobile Safety Belt. Sensors, 15(4), 7742-7753. https://doi.org/10.3390/s150407742