Fruit Quality Evaluation Using Spectroscopy Technology: A Review
Abstract
:1. Introduction
2. Chemometrics
2.1. Pretreatment Methods
2.1.1. Smoothing
2.1.2. Offset Correction
2.1.3. De-Trending
2.1.4. Multiplicative Scatter Correction (MSC)
2.1.5. Standard Normal Variate (SNV)
2.1.6. Derivative Correction
2.1.7. Wavelet Transformation (WT)
2.1.8. Orthogonal Signal Correction (OSC)
2.1.9. Net Analyte Preprocessing (NAP)
2.2. Variable Selection Methods
2.2.1. Successive Projections Algorithm (SPA)
2.2.2. Regression Coefficient (RC)
2.2.3. Loading Weights (LW)
2.2.4. Genetic Algorithm (GA)
2.2.5. Competitive Adaptive Reweighted Sampling (CARS)
2.2.6. Uninformative Variables Elimination (UVE)
2.3. Discriminant Methods
2.3.1. Principal Component Analysis (PCA)
2.3.2. Partial Least Squares-Discriminant Analysis (PLS-DA)
2.3.3. Soft Independent Modeling of Class Analogy (SIMCA)
2.3.4. Linear Discriminant Analysis (LDA)
2.3.5. Support Vector Machine (SVM)
2.4. Calibration Methods
2.4.1. Multiple Linear Regressions (MLR)
2.4.2. Principal Component Regression (PCR)
2.4.3. Partial Least Squares Regression (PLS)
2.4.4. Least Squares Support Vector Machine (LS-SVM)
2.4.5. Artificial Neural Network (ANN)
2.5. Model Evaluation
3. Quality Evaluation for Different Fruit Varieties
Quality Attribute | Chemical Group | Wavelength/nm | Ref. |
---|---|---|---|
Sugar | O-H | 1190, 1400 | [68] |
SSC | C-H | 910 | [69] |
O-H | 960, 1450 | [14] | |
C-H and O-H | 1210 | ||
O-H | 975 | [70] | |
O-H | 960, 1180, 1450, 2000 | [27] | |
C-H | 963 | ||
Combination bands of C-H and O-H | 2000–2500 | ||
O-H and C-H | 950–1075 | [71] | |
Acidity | C-O from COOH | 1607 | [72] |
O-H from carboxyl acids | 1127 | ||
C=O from saturated and unsaturated carboxyl acid | 1437 | ||
pH | C-H | 768 | [73] |
O-H | 986 |
3.1. Apples
Quality Attribute | Cultivar | Method | Spectral Mode | Spectral Range/nm | Calibration Method | rp | SEP | Ref. |
---|---|---|---|---|---|---|---|---|
SSC or sugar content | GA | Spectroscopy | Reflectance | 800–1100 | PCR | 0.97 | 0.28 | [54] |
RD | 800–1100 | 0.98 | 0.34 | |||||
GD | Hyperspectral imaging | Reflectance | 500–1000 | PLS | 0.88 | 0.7 | [4] | |
JG | 0.78 | 0.7 | ||||||
RD | 0.66 | 0.9 | ||||||
Various | Spectroscopy | Reflectance | 800–1600 | PCR | Unknown | 0.73–1.78 | [55] | |
FJ | Spectroscopy | Transmittance | 505–1031 | LS-SVM | 0.98 | 0.29 | [10] | |
Unknown | Spectroscopy | Reflectance | 482–1009 | PLS | 0.96 | 0.23 (RMSEP) | [33] | |
FJ | Spectroscopy | Reflectance | 833–2500 | PLS | 0.98 | 0.69–0.72 (RMSEP) | [68] | |
FJ | Hyperspectral imaging | Reflectance | 480–1016 | PLS | 0.92 | 0.67 | [5] | |
Various | Spectroscopy | Reflectance | 400–2500 | LS-SVM | 0.97 | 0.37 | [6] | |
Various | Spectroscopy | Reflectance | 5882–9900 | PLS | ≥0.98 | 1.9%–3.4% (RMSEP) | [60] | |
Titratable acidity | Various | Spectroscopy | Reflectance | 5882–9900 | PLS | 0.98 | 6.0% (RMSEP) | [60] |
Malic acid | 0.98 | 4.7% (RMSEP) | ||||||
Citric acid | 0.34 | 100% (RMSEP) | ||||||
Firmness | GA | Spectroscopy | Reflectance | 800–1100 | PCR | 0.47 | 4.9 | [54] |
RD | 400–1800 | 0.89 | 7.0 | |||||
GD | Hyperspectral imaging | Reflectance | 500–1000 | PLS | 0.87 | 5.9 | [4] | |
JG | 0.95 | 7.1 | ||||||
RD | 0.84 | 8.7 | ||||||
FJ | Spectroscopy | Reflectance | 1000–2339 | PLS | 0.82 | 14.1 (RSD) | [17] | |
Total polyphenol | Various | Spectroscopy | Reflectance | 400–2500 | LS-SVM | 0.97 | 140 | [6] |
Various | Spectroscopy | Reflectance | 6378–9900 | PLS | 0.98 | 87.1 (RMSEP) | [60] | |
Vitamin C | Various | Spectroscopy | Reflectance | 400–2500 | LS-SVM | 0.90 | 0.049 | [6] |
3.1.1. Soluble Solids Content (SSC) or Sugar Content
3.1.2. Acidity
3.1.3. Firmness
3.1.4. Total Polyphenols
3.1.5. Variety Discrimination
3.1.6. Bruise Detection
3.1.7. Pigment
3.1.8. Other Parameters
Quality Attribute | Cultivar | Method | Spectral Mode | Spectral Range/nm | Calibration Method | rp | RMSEP | Ref. |
---|---|---|---|---|---|---|---|---|
SSC or sugar content | GN | Spectroscopy | Reflectance | 361–2488 | PLS | 0.93 | 0.59 | [58] |
GN | Spectroscopy | Transmittance | 1100–2500 | PLS | 0.90 | 0.46 | [59] | |
GN | Spectroscopy | Reflectance | 820–950 | LS-SVM | 0.92 | 0.32 | [62] | |
Mixed | Spectroscopy | Reflectance | 350–1800 | PCA-BPNN | 0.90 | 0.70 | [63] | |
Mixed | Spectroscopy | Reflectance | 500–2300 | PLS | 0.91 | 0.74 | [82] | |
1100–2300 | 0.89 | 0.68 | ||||||
GN | Spectroscopy | Reflectance | 350–1800 | PCA-BPNN | 0.90 | 0.68 | [14] | |
GN | Spectroscopy | Transmittance | 350–1000 | CARS-PLS | 0.92 | 0.39% | [8] | |
GN | Spectroscopy | Transmittance | 465–1150 | PLS | 0.88 | 0.49% | [83] | |
ST | Spectroscopy | Reflectance | 400–1000 | PCA-PLS | 0.84 | 0.29 (SEP) | [15] | |
HY | 0.87 | 0.30 (SEP) | ||||||
GN | Spectroscopy | Reflectance | 450–1750 | Spline-PLS | 0.87 | 0.47 | [18] | |
GN | Spectroscopy | Reflectance | 700–934 | LS-SVM | 0.85 | 0.41 | [84] | |
Acidity | GN | Spectroscopy | Transmittance | 1100–2500 | PLS | 0.64 | 0.70 | [59] |
0.65 (pH) | 0.13 | |||||||
Mixed | Spectroscopy | Reflectance | 500–2300 | PLS | 0.83 | 0.17 | [82] | |
0.88 (pH) | 0.15 | |||||||
1100–2300 | 0.77 | 0.19 | ||||||
0.81 (pH) | 0.16 | |||||||
Vitamin C | Mixed | Spectroscopy | Reflectance | 1333–1835 | PLS | 0.96 | 0.039 | [20,21] |
3.2. Oranges
3.2.1. SSC or Sugar Content
3.2.2. Acidity
3.2.3. Vitamin C
3.2.4. Variety Discrimination
3.2.5. Other Parameters
3.3. Kiwifruit
Quality Attribute | Cultivar | Method | Spectral Mode | Spectral Range/nm | Calibration Method | rp | RMSEP | Ref. |
---|---|---|---|---|---|---|---|---|
SSC or sugar content | AD | Imaging spectroscopy | Reflectance | 650–1100 | PLS | 0.92 | 1.18 | [2] |
AD | Spectroscopy | Interactance | 800–1100 | PLS | 0.95 | 0.39 | [86] | |
HW | Spectroscopy | Transmittance | 400–1000 | PLS | 0.93 | 0.26 | [87] | |
AC | Spectroscopy | Interactance | 520–1100 | PLS | 0.96 | 0.80 (SEP) | [88] | |
Various | Spectroscopy | Interactance | 800–1000 | PLS | 0.97 | 0.32% | [89] | |
YF | Spectroscopy | Interactance | 300–1140 | PLS | 0.96 | 0.31% (SEP) | [90] | |
HW | Spectroscopy | Reflectance | 800–2500 | PLS | Unknown | 0.68 (SEP) | [91] | |
AD | Spectroscopy | Reflectance | 408–2492 | PLS | 0.99 | 0.49 | [92] | |
Acidity | HW | Spectroscopy | Transmittance | 400–1000 | PLS | 0.94 | 0.076 | [87] |
AD | Spectroscopy | Reflectance | 408–2492 | PLS | 0.95 | 0.28% (SEP) | [92] | |
Firmness | AD | Spectroscopy | Interactance | 800–1100 | PLS | 0.87 | 7.0 | [86] |
AD | Spectroscopy | Reflectance | 408–2492 | PLS | 0.94 | 3.32 | [92] | |
HY | Spectroscopy | Reflectance | 833–2500 | PLS | 0.85 | 1.89 | [19] | |
ZH | Spectroscopy | Reflectance | 1000–2500 | NAP-PLS | 0.88 | 0.88 | [27] | |
Dry matter | AD | Spectroscopy | Interactance | 800–1100 | PLS | 0.95 | 0.42% | [86] |
Various | Spectroscopy | Interactance | 800–1000 | PLS | 0.97 | 0.29% | [89] | |
YF | Spectroscopy | Interactance | 300–1140 | PLS | 0.98 | 0.24% (SEP) | [90] | |
ZH | Spectroscopy | Reflectance | 1000–2500 | siPLS | 0.90 | 0.53% | [34] |
3.3.1. SSC
3.3.2. Acidity
3.3.3. Firmness
3.3.4. Dry Matter (DM)
3.3.5. Other Parameters
3.4. Peaches
Quality Attribute | Cultivar | Method | Spectral Mode | Spectral Range/nm | Calibration Method | rp | SEP | Ref. |
---|---|---|---|---|---|---|---|---|
SSC or sugar content | Various | Spectroscopy | Transmittance | 800–1050 | MLR | 0.20–0.91 | 0.49%–1.63% | [51] |
Unknown | Spectroscopy | Transmittance | 1000–2500 | Stepwise MLR | 0.53 | Unknown | [94] | |
Mixed | Spectroscopy | Reflectance | 325–1075 | ICA-LS-SVM | 0.95 | 0.42 (RMSEP) | [36] | |
Unknown | Multispectral scattering | 632, 650, 670, 900 | MLR | 0.97 | 0.69 | [3] | ||
SH | Spectroscopy | Interactance | 870, 878, 889, 906 | MLR | 0.97 | 0.50 | [95] | |
Mixed | Spectroscopy | Reflectance | 1279–2331 | PLS | 0.96 | 0.57 | [72] | |
DB | Spectroscopy | Reflectance | 800–2500 | PLS | 0.94 (rcv) | 0.57 (RMSECV) | [96] | |
Acidity | Mixed | Spectroscopy | Reflectance | 928–2331 | PLS | 0.95 | 0.13 | [96] |
Mixed | Spectroscopy | Reflectance | 325–1075 | ICA-LS-SVM | 0.96 | 0.047 (RMSEP) | [36] | |
Firmness | Unknown | Multispectral scattering | 670, 780, 850, 900 | MLR | 0.95 | 1.56 | [3] | |
Mixed | Multispectral scattering | 680, 880, 905, 940 | MLR | 0.82 | 18.55 | [97] | ||
RH | Hyperspectral scattering | 500–1000 | MLR | 0.88 | 14.2 | [98] | ||
CS | Hyperspectral scattering | 0.76 | 19.1 | |||||
White peach | Spectroscopy | Reflectance | 800–2500 | PLS | 0.89 | 5.42 (RMSEP) | [99] |
3.4.1. SSC or Sugar Content
3.4.2. Acidity
3.4.3. Firmness
3.4.4. Variety Discrimination
3.4.5. Other Parameters
3.5. Strawberries
3.5.1. SSC
3.5.2. Acidity
3.5.3. Firmness
3.5.4. Variety Discrimination
3.5.5. Other Parameters
3.6. Grapes
3.6.1. SSC or Sugar Content
3.6.2. Acidity
3.6.3. Anthocyanin
3.6.4. Variety Discrimination
3.6.5. Other Parameters
3.7. Jujube
3.8. Bananas
3.9. Mangos
3.10. Other Fruits
4. Conclusions and Future Research
- (1)
- The optimal spectral acquisition condition, as well as preprocessing and calibration method for each kind of fruit needs to be figured out.
- (2)
- A large database is crucial, for stable and accurate models should yield satisfactory performance even when applied to fruit from different origins, seasons and climate conditions.
- (3)
- The model transference between different types of spectrometers hasn’t attracted enough attention yet.
- (4)
- Most of the papers published focused on several major attributes including SSC, acidity and firmness, other important nutrient compositions such as vitamin content, mineral substance and pigments haven’t attract enough attention.
- (5)
- The feasibility of using Vis/NIR spectroscopy to predict some quality attributes has been verified, but the prediction for some other attributes remains uncertain or is definitely less accurate.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- McClure, W.F. Near-infrared spectroscopy—The giant is running strong. Anal. Chem. 1994, 66, A43–A53. [Google Scholar] [CrossRef]
- Martinsen, P.; Schaare, P. Measuring soluble solids distribution in kiwifruit using near-infrared imaging spectroscopy. Postharvest Biol. Technol. 1998, 14, 271–281. [Google Scholar] [CrossRef]
- Liu, M.; Fu, P.; Cheng, R. Non-destructive estimation peach ssc and firmness by mutispectral reflectance imaging. New Zeal. J. Agric. Res. 2007, 50, 601–608. [Google Scholar]
- Mendoza, F.; Lu, R.; Ariana, D.; Cen, H.; Bailey, B. Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content. Postharvest Biol. Technol. 2011, 62, 149–160. [Google Scholar] [CrossRef]
- Shan, J.; Peng, Y.; Wang, W.; Li, Y.; Wu, J.; Zhang, L. Simultaneous detection of external and internal quality parameters of apples using hyperspectral technology. Trans. CSAM 2011, 42, 140–144. [Google Scholar]
- Pissard, A.; Pierna, J.A.F.; Baeten, V.; Sinnaeve, G.; Lognay, G.; Mouteau, A.; Dupont, P.; Rondia, A.; Lateur, M. Non-destructive measurement of vitamin c, total polyphenol and sugar content in apples using near-infrared spectroscopy. J. Sci. Food Agric. 2013, 93, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of nir spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Sun, T.; Xu, W.; Lin, J.; Liu, M.; He, X. Determination of soluble solids content in navel oranges by vis/nir diffuse transmission spectra combined with cars method. Spectrosc. Spectr. Anal. 2012, 32, 3229–3233. [Google Scholar]
- Roger, J.M.; Bellon-Maurel, V. Using genetic algorithms to select wavelengths in near-infrared spectra: Application to sugar content prediction in cherries. Appl. Spectrosc. 2000, 54, 1313–1320. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Quantification of the soluble solids content of intact apples by vis-nir transmittance spectroscopy and the ls-svm method. Spectroscopy 2013, 28, 32–43. [Google Scholar]
- Sanchez, M.T.; Jose De la Haba, M.; Benitez-Lopez, M.; Fernandez-Novales, J.; Garrido-Varo, A.; Perez-Marin, D. Non-destructive characterization and quality control of intact strawberries based on nir spectral data. J. Food Eng. 2012, 110, 102–108. [Google Scholar] [CrossRef]
- Paz, P.; Sanchez, M.T.; Perez-Marin, D.; Guerrero, J.E.; Garrido-Varo, A. Nondestructive determination of total soluble solid content and firmness in plums using near-infrared reflectance spectroscopy. J. Agric. Food. Chem. 2008, 56, 2565–2570. [Google Scholar] [CrossRef] [PubMed]
- Ilari, J.L.; Martens, H.; Isaksson, T. Determination of particle-size in powders by scatter correction in diffuse near-infrared reflectance. Appl. Spectrosc. 1988, 42, 722–728. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, X.; Ouyang, A. Nondestructive measurement of soluble solid content of navel orange fruit by visible-nir spectrometric technique with plsr and pca-bpnn. Lwt-Food Sci. Technol. 2010, 43, 602–607. [Google Scholar] [CrossRef]
- Shao, Y.; He, Y.; Bao, Y.; Mao, J. Near-infrared spectroscopy for classification of oranges and prediction of the sugar content. Int. J. Food Prop. 2009, 12, 644–658. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Shi, B.; Zhao, L.; Wang, H.; Zhu, D. Signal optimization approaches on the prediction of apples firmness by near infrared spectroscopy. Sens. Lett. 2011, 9, 1062–1068. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, X.; Zhou, J.; Zhang, H.; Yang, C. Linear and nonlinear multivariate regressions for determination sugar content of intact gannan navel orange by vis-nir diffuse reflectance spectroscopy. Math. Comput. Model. 2010, 51, 1438–1443. [Google Scholar] [CrossRef]
- Liu, H.; Guo, W.; Yue, R. Non-destructive detection of kiwifruit firmness based on near-infrared diffused spectroscopy. Trans. CSAM 2011, 42, 145–149. [Google Scholar]
- Xia, J.; Li, P.; Li, X.; Wang, W.; Ding, X. Effect of different pretreatment method of nondestructive measure vitamin C content of umbilical orange with near-infrared spectroscopy. Trans. CSAM 2007, 38, 107–111. [Google Scholar]
- Xia, J.; Li, X.; Li, P.; Wang, W.; Ding, X. Approach to nondestructive measurement of vitamin c content of orange with near-infrared spectroscopy treated by wavelet transform. Trans. CSAE 2007, 23, 170–174. [Google Scholar]
- Shao, Y.; He, Y. Nondestructive measurement of acidity of strawberry using vis/nir spectroscopy. Int. J. Food Prop. 2008, 11, 102–111. [Google Scholar] [CrossRef]
- Sjoblom, J.; Svensson, O.; Josefson, M.; Kullberg, H.; Wold, S. An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra. Chemom. Intell. Lab. Syst. 1998, 44, 229–244. [Google Scholar] [CrossRef]
- Goicoechea, H.C.; Olivieri, A.C. A comparison of orthogonal signal correction and net analyte preprocessing methods. Theoretical and experimental study. Chemom. Intell. Lab. Syst. 2001, 56, 73–81. [Google Scholar] [CrossRef]
- Lv, Q.; Tang, M.J.; Zhao, J.W.; Cai, J.R.; Chen, Q.S. Study of simplification of prediction model for kiwifruit firmness using near infrared spectroscopy. Spectrosc. Spectr. Anal. 2009, 29, 1768–1771. [Google Scholar]
- Araujo, M.C.U.; Saldanha, T.C.B.; Galvao, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; Zhao, Y.; Zhao, H. Comparison of modeling methods of fresh jujube soluble solids measurement by nir spectroscopy. Trans. CSAM 2012, 43, 108–112. [Google Scholar]
- Chong, I.G.; Jun, C.H. Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syst. 2005, 78, 103–112. [Google Scholar] [CrossRef]
- Fernandez-Novales, J.; Lopez, M.I.; Sanchez, M.T.; Morales, J.; Gonzalez-Caballero, V. Shortwave-near infrared spectroscopy for determination of reducing sugar content during grape ripening, winemaking, and aging of white and red wines. Food Res. Int. 2009, 42, 285–291. [Google Scholar] [CrossRef]
- Cao, F.; Wu, D.; He, Y. Soluble solids content and ph prediction and varieties discrimination of grapes based on visible–near infrared spectroscopy. Comput. Electron. Agric. 2010, 71, S15–S18. [Google Scholar] [CrossRef]
- Li, H.D.; Liang, Y.Z.; Xu, Q.S.; Cao, D.S. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Centner, V.; Massart, D.L.; de Noord, O.E.; de Jong, S.; Vandeginste, B.M.; Sterna, C. Elimination of uninformative variables for multivariate calibration. Anal. Chem. 1996, 68, 3851–3858. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, A.; Xie, X.; Zhou, Y.; Liu, Y. Partial least squares regression variable screening studies on apple soluble solids nir spectral detection. Spectrosc. Spectr. Anal. 2012, 32, 2680–2684. [Google Scholar]
- Lue, Q.; Tang, M.; Cai, J.; Lu, H. Long-term prediction of zhonghua kiwifruit dry matter by near infrared spectroscopy. Scienceasia 2010, 36, 210–215. [Google Scholar] [CrossRef]
- Guo, Z.; Huang, W.; Chen, L.; Wang, X.; Peng, Y. Nondestructive evaluation of soluble solid content in strawberry by near infrared spectroscopy. In Piageng 2013: Image Processing and Photonics for Agricultural Engineering; Tan, H., Ed.; SPIE: Sanya, China, 2013; Volume 8761. [Google Scholar]
- Shao, Y.; Bao, Y.; He, Y. Visible/near-infrared spectra for linear and nonlinear calibrations: A case to predict soluble solids contents and PH value in peach. Food Bioprocess Technol. 2011, 4, 1376–1383. [Google Scholar] [CrossRef]
- Shi, J.; Zou, X.; Zhao, J.; Mao, H. Selection of wavelength for strawberry nir spectroscopy based on bipls combined with saa. J. Infrared Millim. Waves 2011, 30, 458–462. [Google Scholar] [CrossRef]
- Wu, D.; He, Y.; Bao, Y.D. Fast discrimination of juicy peach varieties by Vis/NIR spectroscopy based on bayesian-sda and pca. Lect. Notes Comput. Sci. 2006, 4113, 931–936. [Google Scholar]
- Cen, H.; He, Y.; Huang, M. Combination and comparison of multivariate analysis for the identification of orange varieties using visible and near infrared reflectance spectroscopy. Eur. Food Res. Technol. 2007, 225, 699–705. [Google Scholar] [CrossRef]
- Cao, F.W.D.; He, Y.; Bao, Y. Variety discrimination of grapes based on visible-near reflectance infrared spectroscopy. Acta Opt. Sin. 2009, 29, 537–540. [Google Scholar]
- Tavakolian, M.S.S.; Silaghi, F.A.; Fabbri, A.; Molari, G.; Giunchi, A.; Guarnieri, A. Differentiation of post harvest date fruit varieties non-destructively using FT-NIR spectroscopy. Int. J. Food Sci. Technol. 2013, 48, 1282–1288. [Google Scholar] [CrossRef]
- Liu, F.; Yusuf, B.L.; Zhong, J.L.; Feng, L.; He, Y.; Wang, L. Variety identification of rice vinegars using visible and near infrared spectroscopy and multivariate calibrations. Int. J. Food Prop. 2011, 14, 1264–1276. [Google Scholar] [CrossRef]
- Hao, Y.S.X.; Gao, R.; Pan, Y.; Liu, Y. Application of visible and near infrared spectroscopy to identification of navel orange varieties using simca and pls-da. Trans. CSAE 2010, 26, 373–377. [Google Scholar]
- Baranowski, P.; Mazurek, W.; Wozniak, J.; Majewska, U. Detection of early bruises in apples using hyperspectral data and thermal imaging. J. Food Eng. 2012, 110, 345–355. [Google Scholar] [CrossRef]
- Guo, Z.M.; Huang, W.Q.; Chen, L.P.; Zhao, C.J.; Peng, Y.K. Geographical classification of apple based on hyperspectral imaging. In Proceedings of the Sensing for Agriculture and Food Quality and Safety V, Baltimore, MD, USA, 30 April–1 May 2013; SPIE-INT Soc. Optical Engineering: Baltimore, MD, USA, 2013; p. 8. [Google Scholar]
- Wang, J.; Nakano, K.; Ohashi, S. Nondestructive evaluation of jujube quality by visible and near-infrared spectroscopy. Lwt-Food Sci. Technol. 2011, 44, 1119–1125. [Google Scholar] [CrossRef]
- Wang, J.; Nakano, K.; Ohashi, S. Nondestructive detection of internal insect infestation in jujubes using visible and near-infrared spectroscopy. Postharvest Biol. Technol. 2011, 59, 272–279. [Google Scholar] [CrossRef]
- He, Y.; Li, X.L.; Shao, Y.N. Discrimination of varieties of apple using near infrared spectra based on principal component analysis and artificial neural network model. Spectrosc. SpectR. Anal. 2006, 26, 850–853. [Google Scholar]
- He, Y.; Li, X.L.; Shao, Y.N. Fast discrimination of apple varieties using vis/nir spectroscopy. Int. J. Food Prop. 2007, 10, 9–18. [Google Scholar] [CrossRef]
- Niu, X.Y.; Shao, L.M.; Zhao, Z.L.; Zhang, X.Y. Nondestructive discrimination of strawberry varieties by nir and bp-ann. Spectrosc. Spect. Anal. 2012, 32, 2095–2099. [Google Scholar]
- Peiris, K.H.S.; Dull, G.G.; Leffler, R.G.; Kays, S.J. Near-infrared spectrometric method for nondestructive determination of soluble solids content of peaches. J. Am. Soc. Hortic. Sci. 1998, 123, 898–905. [Google Scholar]
- ElMasry, G.; Wang, N.; ElSayed, A.; Ngadi, M. Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. J. Food Eng. 2007, 81, 98–107. [Google Scholar] [CrossRef]
- Jaiswal, P.; Jha, S.N.; Bharadwaj, R. Non-destructive prediction of quality of intact banana using spectroscopy. Sci. Hortic. 2012, 135, 14–22. [Google Scholar] [CrossRef]
- Park, B.; Abbott, J.A.; Lee, K.J.; Choi, C.H.; Choi, K.H. Near-infrared diffuse reflectance for quantitative and qualitative measurement of soluble solids and firmness of delicious and gala apples. Trans. ASAE 2003, 46, 1721–1731. [Google Scholar] [CrossRef]
- Angra, S.K.; Dimri, A.K.; Kapur, P. Nondestructive brix evaluation of apples of different origin using near infrared (nir) filter based reflectance spectroscopy. Instrum. Sci. Technol. 2009, 37, 241–253. [Google Scholar] [CrossRef]
- Hadi, A.S.; Ling, R.F. Some cautionary notes on the use of principal components regression. Am. Stat. 1998, 52, 15–19. [Google Scholar]
- Wold, S.; Sjostrom, M.; Eriksson, L. Pls-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Liu, Y.; Ouyang, A.; Luo, J.; Chen, X. Near infrared diffuse reflectance spectroscopy for rapid analysis of soluble solids content in navel orange. Spectrosc. Spectr. Anal. 2007, 27, 2190–2192. [Google Scholar]
- Lu, H.; Jiang, H.; Fu, X.; Yu, H.; Xu, H.; Ying, Y. Non-invasive measurements of the internal quality of intact ‘gannan’ navel orange by vis/nir spectroscopy. Trans. ASABE 2008, 51, 1009–1014. [Google Scholar] [CrossRef]
- Bureau, S.; Scibisz, I.; le Bourvellec, C.; Renard, C.M.G.C. Effect of sample preparation on the measurement of sugars, organic acids, and polyphenols in apple fruit by mid-infrared spectroscopy. J. Agric. Food. Chem. 2012, 60, 3551–3563. [Google Scholar] [CrossRef] [PubMed]
- Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, R.; Hao, Y.; Sun, X.; Ouyang, A. Improvement of near-infrared spectral calibration models for brix prediction in ‘gannan’ navel oranges by a portable near-infrared device. Food Bioprocess Technol. 2012, 5, 1106–1112. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Ouyang, A. Non-destructive measurement of soluble solid content in gannan navel oranges by visible/near-infrared spectroscopy. Acta Opt. Sin. 2008, 28, 478–481. [Google Scholar]
- Zhang, S.; Wang, F.; Zhang, H.; Zhao, C.; Yang, G. Detection of the fresh jujube varieties and ssc by nir spectroscopy. Trans. CSAM 2009, 40, 139–142. [Google Scholar]
- He, J.G.; Luo, Y.; Liu, G.S.; Xu, S.; Si, Z.H.; He, X.G.; Wang, S.L. Prediction of soluble solids content of jujube fruit using hyperspectral reflectance imaging. In Mechatronics and Intelligent Materials III, Pts 1–3; Chen, R., Sung, W.P., Kao, J.C.M., Eds.; Trans. Tech. Publications: XiShuangBanNa, China, 2013; Volume 706–708, pp. 201–204. [Google Scholar]
- Tallada, J.G.; Nagata, M.; Kobayashi, T. Non-destructive estimation of firmness of strawberries (fragaria x ananassa duch.) using nir hyperspectral imaging. Environ. Control Biol. 2006, 44, 245–255. [Google Scholar] [CrossRef]
- Davey, M.W.; Saeys, W.; Hof, E.; Ramon, H.; Swennen, R.L.; Keulemans, J. Application of visible and near-infrared reflectance spectroscopy (Vis/NIRS) to determine carotenoid contents in banana (musa spp.) fruit pulp. J. Agric. Food. Chem. 2009, 57, 1742–1751. [Google Scholar] [CrossRef] [PubMed]
- Kemps, B.; Leon, L.; Best, S.; de Baerdemaeker, J.; de Ketelaere, B. Assessment of the quality parameters in grapes using vis/nir spectroscopy. Biosyst. Eng. 2010, 105, 507–513. [Google Scholar] [CrossRef]
- Omar, A.F. Spectroscopic profiling of soluble solids content and acidity of intact grape, lime, and star fruit. Sens. Rev. 2013, 33, 238–245. [Google Scholar] [CrossRef]
- Shao, Y.; He, Y. Nondestructive measurement of the internal quality of bayberry juice using vis/nir spectroscopy. J. Food Eng. 2007, 79, 1015–1019. [Google Scholar] [CrossRef]
- Yu, J.J.; He, Y.; Bao, Y.D. Nondestructive test on predicting sugar content and valid acidity of mango by spectroscopy technology. Spectrosc. Spect. Anal. 2008, 28, 2839–2842. [Google Scholar]
- Liu, Y.D.; Ying, Y.B.; Chen, Z.M.; Fu, X.P. Appli3 peaches. In Monitoring Food Safety, Agriculture, and Plant Health; Bennedsen, B.S., Chen, Y.R., Meyer, G.E., Senecal, A.G., Tu, S.I., Eds.; SPIE: Providence, USA, 2004; Volume 5271, pp. 347–355. [Google Scholar]
- González-Caballero, V.; Sánchez, M.T.; López, M.I.; Pérez-Marín, D. First steps towards the development of a non-destructive technique for the quality control of wine grapes during on-vine ripening and on arrival at the winery. J. Food Eng. 2010, 101, 158–165. [Google Scholar] [CrossRef]
- Wang, J.; Pan, L.; Li, P.; Han, D. Temperature compensation for calibration model of apple fruit soluble solids contents by near infrared reflectance. Spectrosc. Spectr. Anal. 2009, 29, 1517–1520. [Google Scholar]
- Zou, X.; Zhao, J.; Li, Y. Objective quality assessment of apples using machine vision, nir spectrophotometer, and electronic nose. Trans. ASABE 2010, 53, 1351–1358. [Google Scholar]
- Luo, X.; Takahashi, T.; Kyo, K.; Zhang, S. Wavelength selection in vis/NIR spectra for detection of bruises on apples by ROC analysis. J. Food Eng. 2012, 109, 457–466. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, B.; Li, J.; Zhang, C. Early detection of bruises on apples using near-infrared hyperspectral image. In Piageng 2013: Image Processing and Photonics for Agricultural Engineering; Tan, H., Ed.; SPIE: Sanya, Chian, 2013; Volume 8761. [Google Scholar]
- Huang, W.; Zhao, C.; Wang, Q.; Li, J.; Zhang, C. Development of a multi-spectral imaging system for the detection of bruises on apples. In Sensing for Agriculture and Food Quality and Safety V; Kim, M.S., Tu, S.I., Chao, K., Eds.; SPIE: Maryland, USA, 2013; Volume 8721. [Google Scholar]
- Zude, M.; Herold, B.; Roger, J.M.; Bellon-Maurel, V.; Landahl, S. Non-destructive tests on the prediction of apple fruit flesh firmness and soluble solids content on tree and in shelf life. J. Food Eng. 2006, 77, 254–260. [Google Scholar] [CrossRef]
- Rutkowski, K.P.; Michalczuk, B.; Konopacki, P. Nondestructive determination of ‘golden delicious’ apple quality and harvest maturity. J. Fruit Ornam. Plant Res. 2008, 16, 39–52. [Google Scholar]
- Kuckenberg, J.; Tartachnyk, I.; Noga, G. Evaluation of fluorescence and remission techniques for monitoring changes in peel chlorophyll and internal fruit characteristics in sunlit and shaded sides of apple fruit during shelf-life. Postharvest Biol. Technol. 2008, 48, 231–241. [Google Scholar] [CrossRef]
- Cayuela, J.A.; Weiland, C. Intact orange quality prediction with two portable nir spectrometers. Postharvest Biol. Technol. 2010, 58, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Sun, T.; Wu, W.; Liu, M. Near-infrared spectrum detection result influenced by navel oranges placement position. Spectrosc. Spectr. Anal. 2012, 32, 3002–3005. [Google Scholar]
- Sun, X.; Hao, Y.; Gao, R.; Ouyang, A.; Liu, Y. Research on optimization of model for detecting sugar content of navel orange by online near infrared spectroscopy. Spectrosc. Spectr. Anal. 2011, 31, 1230–1235. [Google Scholar]
- Deng, L.; He, S.; Yi, S.; Zheng, Y.; Xie, R.; Zhang, X.; Mao, S. Study on synchronous correlation between fruit characteristic spectrum and the parameter of internal quality for hamlin sweet orange fruit. Spectrosc. Spectr. Anal. 2010, 30, 1049–1052. [Google Scholar]
- McGlone, V.A.; Kawano, S. Firmness, dry-matter and soluble-solids assessment of postharvest kiwifruit by nir spectroscopy. Postharvest Biol. Technol. 1998, 13, 131–141. [Google Scholar] [CrossRef]
- Moghimi, A.; Aghkhani, M.H.; Sazgarnia, A.; Sarmad, M. Vis/nir spectroscopy and chemometrics for the prediction of soluble solids content and acidity (ph) of kiwifruit. Biosystems Eng. 2010, 106, 295–302. [Google Scholar] [CrossRef]
- Schaare, P.N.; Fraser, D.G. Comparison of reflectance, interactance and transmission modes of visible-near infrared spectroscopy for measuring internal properties of kiwifruit (actinidia chinensis). Postharvest Biol. Technol. 2000, 20, 175–184. [Google Scholar] [CrossRef]
- McGlone, V.A.; Jordan, R.B.; Seelye, R.; Martinsen, P.J. Comparing density and nir methods for measurement of kiwifruit dry matter and soluble solids content. Postharvest Biol. Technol. 2002, 26, 191–198. [Google Scholar] [CrossRef]
- McGlone, V.A.; Clark, C.J.; Jordan, R.B. Comparing density and vnir methods for predicting quality parameters of yellow-fleshed kiwifruit (actinidia chinensis). Postharvest Biol. Technol. 2007, 46, 1–9. [Google Scholar] [CrossRef]
- Arazuri, S.; Jaren, C.; Arana, J.I. Selection of the temperature in the sugar content determination of kiwi fruit. Int. J. Infrared Millim. Waves 2005, 26, 607–616. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, S.C.; Seong, K.C.; Kim, C.H.; Um, Y.C.; Lee, S.K. Quality prediction of kiwifruit based on near infrared spectroscopy. Korean J. Hortic. Sci. 2012, 30, 709–717. [Google Scholar] [CrossRef]
- Feng, J.; McGlone, A.V.; Currie, M.; Clark, C.J.; Jordan, B.R. Assessment of yellow-fleshed kiwifruit (actinidia chinensis ‘hort16a’) quality in pre- and post-harvest conditions using a portable near-infrared spectrometer. Hortscience 2011, 46, 57–63. [Google Scholar]
- Jiang, M.; Lu, H.; Ying, Y.; Xu, H. Design and validation of software for real-time soluble solids content evaluation of peach by near infrared spectroscopy—Art. No. 638118. In Optics for Natural Resources, Agriculture, and Foods; Chen, Y.R., Meyer, G.E., Tu, S.I., Eds.; 2006; Volumr 6381, pp. 38118–38118. [Google Scholar]
- Kawano, S.; Watanabe, H.; Iwamoto, M. Determination of sugar content in intact peaches by near-infrared spectroscopy with fiber optics in interactance mode. J. Jpn. Soc. Hortic. Sci. 1992, 61, 445–451. [Google Scholar] [CrossRef]
- Ma, G.; Fu, X.; Zhou, Y.; Ying, Y.; Xu, H.; Xie, L.; Lin, T. Nondestructive sugar content determination of peaches by using near infrared spectroscopy technique. Spectrosc. Spectr. Anal. 2007, 27, 907–910. [Google Scholar]
- Lu, R.F.; Peng, Y.K. Assessing peach firmness by multi-spectral scattering. J. Near Infrared Spectrosc. 2005, 13, 27–35. [Google Scholar] [CrossRef]
- Lu, R.F.; Peng, Y.K. Hyperspectral scattering for assessing peach fruit firmness. Biosyst. Eng. 2006, 93, 161–171. [Google Scholar] [CrossRef]
- Fu, X.; Ying, Y.; Zhou, Y.; Xie, L.; Xu, H. Application of nir spectroscopy for firmness evaluation of peaches. J. Zhejiang Univ. Sci. B 2008, 9, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Hu, X.Y.; He, Y. New approach of discrimination of varieties of juicy peach by near infrared spectra based on pca and mda model. J. Infrared Millim Waves 2006, 25, 417–420. [Google Scholar]
- Zwiggelaar, R.; Yang, Q.S.; GarciaPardo, E.; Bull, C.R. Use of spectral information and machine vision for bruise detection on peaches and apricots. J. Agric. Eng. Res. 1996, 63, 323–331. [Google Scholar] [CrossRef]
- Takano, K.; Senoo, T.; Uno, T.; Sasabe, Y.; Tada, M. Distinction of astringency in peach fruit using near-infrared spectroscopy. Hortic. Res. (Jpn.) 2007, 6, 137–143. [Google Scholar] [CrossRef]
- Lleó, L.; Barreiro, P.; Ruiz-Altisent, M.; Herrero, A. Multispectral images of peach related to firmness and maturity at harvest. J. Food Eng. 2009, 93, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Nishizawa, T.; Mori, Y.; Fukushima, S.; Natsuga, M.; Maruyama, Y. Non-destructive analysis of soluble sugar components in strawberry fruits using near-infrared spectroscopy. J. Jpn Soc. Food Sci. 2009, 56, 229–235. [Google Scholar] [CrossRef]
- Yan, R.; Wang, X.; Qiu, B.; Shi, D.; Kong, P. Discrimination of strawberries varieties based on characteristic spectrum. Trans. CASM 2013, 44, 182–186. [Google Scholar]
- Nagata, M.; Tallada, J.G.; Kobayashi, T. Bruise detection using nir hyperspectral imaging for strawberry (fragaria x ananassa duch.). Environ. Control Biol. 2006, 44, 133–142. [Google Scholar] [CrossRef]
- Fernandez-Novales, J.; Lopez, M.I.; Sanchez, M.T.; Garcia-Mesa, J.A.; Gonzalez-Caballero, V. Assessment of quality parameters in grapes during ripening using a miniature fiber-optic near-infrared spectrometer. Int. J. Food. Sci. Nutr. 2009, 60, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Herrera, J.; Guesalaga, A.; Agosin, E. Shortwave-near infrared spectroscopy for non-destructive determination of maturity of wine grapes. Meas. Sci. Technol. 2003, 14, 689–697. [Google Scholar] [CrossRef]
- Larrain, M.; Guesalaga, A.R.; Agosin, E. A multipurpose portable instrument for determining ripeness in wine grapes using nir spectroscopy. IEEE Trans. Instrum. Meas. 2008, 57, 294–302. [Google Scholar] [CrossRef]
- Wu, G.; Huang, L.; He, Y. Research on the sugar content measurement of grape and berries by using vis/nir spectroscopy technique. Spectrosc. Spectr. Anal. 2008, 28, 2090–2093. [Google Scholar]
- Zhang, S.; Zhang, H.; Zhao, Y.; Guo, W.; Zhao, H. A simple identification model for subtle bruises on the fresh jujube based on nir spectroscopy. Math. Comput. Model. 2013, 58, 545–550. [Google Scholar] [CrossRef]
- Wang, J.; Nakano, K.; Ohashi, S.; Takizawa, K.; He, J.G. Comparison of different modes of visible and near-infrared spectroscopy for detecting internal insect infestation in jujubes. J. Food Eng. 2010, 101, 78–84. [Google Scholar] [CrossRef]
- Wang, J.; Nakano, K.; Ohashi, S.; Kubota, Y.; Takizawa, K.; Sasaki, Y. Detection of external insect infestations in jujube fruit using hyperspectral reflectance imaging. Biosyst. Eng. 2011, 108, 345–351. [Google Scholar] [CrossRef]
- Tarkosova, J.; Copikova, J. Determination of carbohydrate content in bananas during ripening and storage by near infrared spectroscopy. J. Near Infrared Spectrosc. 2000, 8, 21–26. [Google Scholar] [CrossRef]
- Subedi, P.P.; Walsh, K.B. Assessment of sugar and starch in intact banana and mango fruit by swnir spectroscopy. Postharvest Biol. Technol. 2011, 62, 238–245. [Google Scholar] [CrossRef]
- Jha, S.N.; Jaiswal, P.; Narsaiah, K.; Gupta, M.; Bhardwaj, R.; Singh, A.K. Non-destructive prediction of sweetness of intact mango using near infrared spectroscopy. Sci. Hortic. 2012, 138, 171–175. [Google Scholar] [CrossRef]
- Schmilovitch, Z.; Mizrach, A.; Hoffman, A.; Egozi, H.; Fuchs, Y. Determination of mango physiological indices by near-infrared spectrometry. Postharvest Biol. Technol. 2000, 19, 245–252. [Google Scholar] [CrossRef]
- Saranwong, S.; Sornsrivichai, J.; Kawano, S. Prediction of ripe-stage eating quality of mango fruit from its harvest quality measured nondestructively by near infrared spectroscopy. Postharvest Biol. Technol. 2004, 31, 137–145. [Google Scholar] [CrossRef]
- Jha, S.N.; Narsaiah, K.; Jaiswal, P.; Bhardwaj, R.; Gupta, M.; Kumar, R.; Sharma, R. Nondestructive prediction of maturity of mango using near infrared spectroscopy. J. Food Eng. 2014, 124, 152–157. [Google Scholar] [CrossRef]
- Lu, R. Predicting firmness and sugar content of sweet cherries using near-infrared diffuse reflectance spectroscopy. Trans. ASAE 2001, 44, 1265–1271. [Google Scholar]
- Zhang, P.; Li, J.; Meng, X.; Zhang, P.; Feng, X.; Wang, B. Research on nondestructive measurement of soluble tannin content of astringent persimmon using visible and near infrared diffuse reflection spectroscopy. Spectrosc. Spectr. Anal. 2011, 31, 951–954. [Google Scholar]
- Qin, J.W.; Thomas, F.B.; Zhao, X.H.; Nikhil, N.; Mark, A.R. Development of a two-band spectral imaging system for real-time citrus canker detection. J. Food Eng. 2012, 108, 87–93. [Google Scholar] [CrossRef]
- Schulz, H.; Baranska, M.; Baranski, R. Potential of nir-ft-raman spectroscopy in natural carotenoid analysis. Biopolymers 2005, 77, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Baranska, M.; Schutz, W.; Schulz, H. Determination of lycopene and beta-carotene content in tomato fruits and related products: Comparison of ft-raman, atr-ir, and nir spectroscopy. Anal. Chem. 2006, 78, 8456–8461. [Google Scholar] [CrossRef] [PubMed]
- Baranska, M.; Roman, M.; Dobrowolski, J.C.; Schulz, H.; Baranski, R. Recent advances in raman analysis of plants: Alkaloids, carotenoids, and polyacetylenes. Curr. Anal. Chem. 2013, 9, 108–127. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Peng, J.; Xie, C.; Bao, Y.; He, Y. Fruit Quality Evaluation Using Spectroscopy Technology: A Review. Sensors 2015, 15, 11889-11927. https://doi.org/10.3390/s150511889
Wang H, Peng J, Xie C, Bao Y, He Y. Fruit Quality Evaluation Using Spectroscopy Technology: A Review. Sensors. 2015; 15(5):11889-11927. https://doi.org/10.3390/s150511889
Chicago/Turabian StyleWang, Hailong, Jiyu Peng, Chuanqi Xie, Yidan Bao, and Yong He. 2015. "Fruit Quality Evaluation Using Spectroscopy Technology: A Review" Sensors 15, no. 5: 11889-11927. https://doi.org/10.3390/s150511889
APA StyleWang, H., Peng, J., Xie, C., Bao, Y., & He, Y. (2015). Fruit Quality Evaluation Using Spectroscopy Technology: A Review. Sensors, 15(5), 11889-11927. https://doi.org/10.3390/s150511889