Sol-Gel Thin Films for Plasmonic Gas Sensors
Abstract
:1. Introduction
2. Sol-Gel Nanomaterials for Optical Sensors Based on Localized Plasmons
2.1. In SituFormation of Plasmonic Nanoparticles
2.2. ExSituFabrication of Plasmonic Nanoparticles
3. Sol-Gel Nanomaterials for Optical Sensors Based on Extended Plasmons
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Hulanicki, A.; Glab, S.; Ingman, F. Chemical sensors definitions and classification. Pure Appl. Chem. 1991, 63, 1247–1250. [Google Scholar] [CrossRef]
- Educhi, K. Optical gas sensors. In Gas Sensors; Sberveglieri, G., Ed.; Kluwer Academics Publishers: Dordrecht, The Nederland, 1992; pp. 307–328. [Google Scholar]
- Donagh, C.C.; Burke, C.S.; Craith, B.D. Optical chemical sensors. Chem. Rev. 2008, 108, 400–422. [Google Scholar]
- Willets, K.A.; Van Duyne, R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.M.; Lazarides, A.A. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J. Phys. Chem. B 2005, 109, 21556–21565. [Google Scholar] [CrossRef] [PubMed]
- Bingham, J.M.; Anker, J.N.; Kreno, L.E.; Van-Duyne, R.P. Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J. Am. Chem. Soc. 2010, 132, 17358–17359. [Google Scholar] [CrossRef] [PubMed]
- Ando, M.; Kobayashi, T.; Haruta, M. Combined effects of small gold particles on the optical gas sensing by transition metal oxide films. Catal. Today 1997, 36, 135–141. [Google Scholar] [CrossRef]
- Ando, M.; Kobayashi, T.; Iijima, S.; Haruta, M. Optical recognition of CO and H2 by use of gas-sensitive Au-Co3O4 composite films. J. Mater. Chem. 1997, 7, 1779–1783. [Google Scholar] [CrossRef]
- Sirinakis, G.; Siddique, R.; Manning, I.; Rogers, P.H.; Carpenter, M.A. Development and characterization of Au-YSZ surface plasmon resonance based sensing materials: High temperature detection of CO. J. Phys. Chem. B 2006, 110, 13508–13511. [Google Scholar] [CrossRef] [PubMed]
- Rogers, P.H.; Sirinakis, G.; Carpenter, M.A. Plasmonic-based detection of NO2 in a harsh environment. J. Phys. Chem. C 2008, 112, 8784–8790. [Google Scholar] [CrossRef]
- Joy, N.A.; Nandasiri, M.I.; Rogers, P.H.; Jiang, W.; Varga, T.; Kuchibhatla, S.V.N.T.; Thevuthasan, S.; Carpenter, M.A. Selective plasmonic gas sensing: H2, NO2 and CO spectral discrimination by a single Au-CeO2 nanocomposite film. Anal. Chem. 2012, 84, 5025–5034. [Google Scholar] [CrossRef] [PubMed]
- Kreno, L.E.; Hupp, J.T.; van Duyne, R.P. Metal-organic frame work thin film for enhanced localized surface plasmon resonance gas sensing. Anal. Chem. 2010, 82, 8042–8046. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.-Y.; Huang, M.H. Polyhedral Au-Pd core-shell nanocrystals as highly spectrally responsive and reusable hydrogen sensors in aqueous solution. Angew. Chem. Int. Ed. 2013, 52, 12709–12713. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Tang, M.L.; Hentschel, M.; Giessen, H.; Alivisatos, A.P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 2011, 10, 631–636. [Google Scholar]
- Tittl, A.; Yin, X.; Giessen, H.; Tian, X.-D.; Tian, Z.Q.; Kremers, C.; Chigrin, D.N.; Liu, N. Plasmonic smart dust for probing local chemical reactions. Nano Lett. 2013, 13, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.M.; Hafner, J.H. Localized surface plasmon resonance sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef] [PubMed]
- Wadell, C.; Syrenova, S.; Langhammer, C. Plasmonic hydrogen sensing with nanostructured metal hydrides. ACS Nano 2014, 8, 11925–11940. [Google Scholar] [CrossRef] [PubMed]
- Knoll, W. Interfaces and thin films as seen by bound electromagnetic waves. Annu. Rev. Phys. Chem. 1998, 49, 569–638. [Google Scholar] [CrossRef] [PubMed]
- Brockman, J.M.; Nelson, B.P.; Corn, R.M. Surface plasmon resonance imaging measurements of ultrathin organic films. Annu. Rev. Phys. Chem. 2000, 51, 41–63. [Google Scholar] [CrossRef] [PubMed]
- Shankaran, D.R.; Gobi, K.V.; Miura, N. Recent advancements in surface plasmon resonance immune sensors for detection of small molecules of biomedical, food and environmental interest. Sens. Actuators B 2007, 121, 158–177. [Google Scholar] [CrossRef]
- Ligler, F.S. Perspective on optical biosensors and integrated sensor systems. Anal. Chem. 2009, 81, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil. Mag. 1902, 4, 396–402. [Google Scholar] [CrossRef]
- Ritchie, R.H. Plasma losses by fast electrons in thin films. Phys. Rev. 1957, 106, 874–881. [Google Scholar] [CrossRef]
- Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 1968, 216, 398–410. [Google Scholar] [CrossRef]
- Raether, H.; Kretschmann, E. Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforschung 1968, 23, 2135–2136. [Google Scholar]
- Ordal, M.A.; Long, L.L.; Bell, R.J.; Bell, S.E.; Bell, R.R.; Alexander, R.W.; Ward, J.; Ward, C.A. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 1983, 11, 1099–1119. [Google Scholar] [CrossRef]
- Nagata, K.; Handa, H. Real-time analysis of biomolecular interactions; Springer-Verlag: Tokyo, Japan, 2000. [Google Scholar]
- Brigo, L.; Gazzola, E.; Cittadini, M.; Zilio, P.; Zacco, G.; Romanato, F.; Martucci, A.; Guglielmi, M.; Brusatin, G. Short and long range surface plasmon polariton waveguides for xylene sensing. Nanotechnology 2013, 24. [Google Scholar] [CrossRef] [PubMed]
- Ince, R.; Narayanaswamy, R. Analysis of the performance of interferometry, surface plasmon resonance and luminescence as biosensors and chemosensors. Anal. Chim. Acta 2006, 569, 1–20. [Google Scholar] [CrossRef]
- Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuators B 1999, 54, 3–15. [Google Scholar] [CrossRef]
- Gaspera, E.; Buso, D.; Martucci, A. Gold nanoparticles to boost the gas sensing performance of porous sol-gel thin films. J. Sol-Gel Sci. Technol. 2011, 60, 366–377. [Google Scholar]
- Arafat, M.M.; Dinan, B.; Akbar, S.A.; Haseeb, A.S.M.A. Gas sensors based on one dimensional nanostructured metal-oxides: A review. Sensors 2012, 12, 7207–7258. [Google Scholar] [CrossRef] [PubMed]
- Della Gaspera, E.; Gulgielmi, M; Martucci, A. Sol-gel for gas sensing applications. In The Sol-Gel Handbook—Vol.3 Applications; Levy, D., Zayat, M., Eds.; Wiley-VCH: Weinheim, Germany, 2015. [Google Scholar]
- Ohodnicki, P.R., Jr.; Wang, C.; Natesakhawat, S.; Baltrus, J.P.; Brown, T.D. In-situ and ex-situ characterization of TiO2 and Au nanoparticle incorporated TiO2 thin films for optical gas sensing at extreme temperatures. J. Appl. Phys. 2012, 111, 064320. [Google Scholar] [CrossRef]
- Ohodnicki, P.R., Jr.; Buric, M.P.; Brown, T.D.; Matranga, C.; Wang, C.; Baltrus, J.P.; Andio, M. Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures. Nanoscale 2013, 5, 9030–9039. [Google Scholar] [CrossRef] [PubMed]
- Ohodnicki, P.R., Jr.; Brown, T.D.; Holcomb, G.R.; Tylczak, J.; Schultz, A.M.; Baltrus, J.P. High temperature optical sensing of gas and temperature using Au-nanoparticle incorporated oxides. Sens. Actuators B 2014, 202, 489–499. [Google Scholar] [CrossRef]
- Nooke, A.; Beck, U.; Hertwig, A.; Krause, A.; Krüger, H.; Lohse, V.; Negendank, D.; Steinbach, J. Ellipsometric detection of gases with the surface plasmon resonance effect on gold top-coated with sensitive layers. Thin Solid Film 2011, 519, 2659–2663. [Google Scholar] [CrossRef]
- Martucci, A.; Buso, D.; Monte, M.D.; Guglielmi, M.; Cantalini, C.; Sada, C. Nanostructured sol-gel silica thin films doped with NiO and SnO2 for gas sensing applications. J. Mater. Chem. 2004, 14, 2889–2895. [Google Scholar] [CrossRef]
- Cantalini, C.; Post, M.; Buso, D.; Guglielmi, M.; Martucci, A. Gas sensing properties of nanocrystalline NiO and Co3O4 in porous silica sol-gel films. Sens. Actuators B Chem. 2005, 108, 184–192. [Google Scholar] [CrossRef]
- Mattei, G.; Mazzoldi, P.; Post, M.L.; Buso, D.; Guglielmi, M.; Martucci, A. Cookie-like Au/NiO nanoparticles with optical gas-sensing properties. Adv. Mater. 2007, 19, 561–564. [Google Scholar] [CrossRef]
- Buso, D.; Guglielmi, M.; Martucci, A.; Mattei, G.; Mazzoldi, P.; Sada, C.; Post, M.L. Growth of cookie-like Au/NiO nanoparticles in SiO2 sol-gel films and their optical gas sensing properties. Cryst. Growth Des. 2008, 8, 744–749. [Google Scholar] [CrossRef]
- Buso, D.; Busato, G.; Guglielmi, M.; Martucci, A.; Bello, V.; Mattei, G.; Mazzoldi, P.; Post, M.L. Selective optical detection of H2 and CO with SiO2 sol–gel films containing NiO and Au nanoparticles. Nanotechnology 2007, 18. [Google Scholar] [CrossRef]
- Buso, D.; Guglielmi, M.; Martucci, A.; Mattei, G.; Mazzoldi, P.; Sada, C.; Post, M.L. Au and NiO nanocrystals doped into porous sol-gel SiO2 films and the effect on optical CO detection. Nanotechnology 2006, 17. [Google Scholar] [CrossRef] [PubMed]
- Della Gaspera, E.; Buso, D.; Guglielmi, M.; Martucci, A.; Bello, V.; Mattei, G.; Post, M.L.; Cantalini, C.; Agnoli, S.; Granozzi, G.; et al. Comparison study of conductometric, optical and SAW gas sensors based on porous sol-gel silica films doped with NiO and Au nanocrystals. Sens. Actuators B Chem. 2010, 143, 567–573. [Google Scholar] [CrossRef] [Green Version]
- Della Gaspera, E.; Bello, V.; Mattei, G.; Martucci, A. SiO2 mesoporous thin films containing Ag and NiO nanoparticles synthesized combining sol-gel and impregnation techniques. Mater. Chem. Phys. 2011, 131, 313–319. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Guglielmi, M.; Agnoli, S.; Granozzi, G.; Post, M.L.; Bello, V.; Mattei, G.; Martucci, A. Au nanoparticles in nanocrystalline TiO2-NiO films for SPR-based, selective H2S gas sensing. Chem. Mater. 2010, 22, 3407–3417. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Guglielmi, M.; Giallongo, G.; Agnoli, S.; Granozzi, G.; Quaglio, F.; Martucci, A. Role of au nanoparticles and NiTiO3 matrix in H2S sensing and its catalytic oxidation to SOX. Sens. Lett. 2011, 9, 591–594. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Pujatti, M.; Guglielmi, M.; Post, M.L.; Martucci, A. Structural evolution and hydrogen sulfide sensing properties of NiTiO3-TiO2 sol-gel thin films containing Au nanoparticles. Mater. Sci. Eng. B 2011, 176, 716–722. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Martucci, A. Detecting H2S oscillatory response using surface plasmon spectroscopy. MRS Online Proc. Lib. 2013, 1552, 77–82. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Martucci, A.; Post, M. ZnO-NiO thin films containing Au nanoparticles for Co optical sensing. Sens. Lett. 2011, 9, 600–604. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Guglielmi, M.; Martucci, A.; Giancaterini, L.; Cantalini, C. Enhanced optical and electrical gas sensing response of sol-gel based NiO-Au and ZnO-Au nanostructured thin films. Sens. Actuators B Chem. 2012, 164, 54–63. [Google Scholar] [CrossRef]
- Buso, D.; Pacifico, J.; Martucci, A.; Mulvaney, P. Gold-nanoparticle-doped TiO2 semiconductor thin films: Optical characterization. Adv. Funct. Mater. 2007, 17, 347–354. [Google Scholar] [CrossRef]
- Manera, M.G.; Spadavecchia, J.; Buso, D.; de Julián Fernández, C.; Mattei, G.; Martucci, A.; Mulvaney, P.; Pérez-Juste, J.; Rella, R.; Vasanelli, L.; et al. Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films. Sens. Actuators B Chem. 2008, 132, 107–115. [Google Scholar] [CrossRef]
- Buso, D.; Post, M.; Cantalini, C.; Mulvaney, P.; Martucci, A. Gold nanoparticle-doped TiO2 semiconductor thin films: Gas sensing properties. Adv. Funct. Mater. 2008, 18, 3843–3849. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Antonello, A.; Guglielmi, M.; Post, M.L.; Bello, V.; Mattei, G.; Romanato, F.; Martucci, A. Colloidal approach to Au-loaded TiO2 thin films with optimized optical sensing properties. J. Mater. Chem. 2011, 21, 4293–4300. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Mura, A.; Menin, E.; Guglielmi, M.; Martucci, A. Reducing gases and VOCs optical sensing using surface plasmon spectroscopy of porous TiO2-Au colloidal films. Sens. Actuator. B Chem. 2013, 187, 363–370. [Google Scholar] [CrossRef]
- Antonello, A.; Della Gaspera, E.; Baldauf, J.; Mattei, G.; Martucci, A. Improved thermal stability of Au nanorods by use of photosensitive layered titanates for gas sensing applications. J. Mater. Chem. 2011, 21, 13074–13078. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Bersani, M.; Mattei, G.; Nguyen, T.-L.; Mulvaney, P.; Martucci, A. Cooperative effect of Au and Pt inside TiO2 matrix for optical hydrogen detection at room temperature using surface plasmon spectroscopy. Nanoscale 2012, 4, 5972–5979. [Google Scholar] [CrossRef] [PubMed]
- Della Gaspera, E.; Guglielmi, M.; Perotto, G.; Agnoli, S.; Granozzi, G.; Post, M.L.; Martucci, A. CO optical sensing properties of nanocrystalline ZnO-Au films: Effect of doping with transition metal ions. Sens. Actuators B Chem. 2012, 161, 675–683. [Google Scholar] [CrossRef]
- Brigo, L.; Cittadini, M.; Artiglia, L.; Rizzi, G.A.; Granozzi, G.; Guglielmi, M.; Martucci, A.; Brusatin, G. Xylene sensing properties of aryl-bridged polysilsesquioxane thin films coupled to gold nanoparticles. J. Mater. Chem. C 2013, 1, 4252–4260. [Google Scholar] [CrossRef]
- Freeman, R.G.; Grabar, K.C.; Allison, K.J.; Bright, R.M.; Davis, J.A.; Guthrie, A.P.; Hommer, M.B.; Jackson, M.A.; Smith, P.C.; Walter, D.G.; et al. Self-assembled metal colloid monolayers: An approach to SERS substrates. Science 1995, 267, 1629–1632. [Google Scholar] [CrossRef] [PubMed]
- Buso, D.; Palmer, L.; Bello, V.; Mattei, G.; Post, M.; Mulvaney, P.; Martucci, A. Self-assembled gold nanoparticle monolayers in sol-gel matrices: Synthesis and gas sensing applications. J. Mater. Chem. 2009, 19, 2051–2057. [Google Scholar] [CrossRef]
- Della Gaspera, E.; Karg, M.; Baldauf, J.; Jasieniak, J.; Maggioni, G.; Martucci, A. Au nanoparticle monolayers covered with sol-gel oxide thin films: Optical and morphological study. Langmuir 2011, 27, 13739–13747. [Google Scholar] [CrossRef] [PubMed]
- Brigo, L.; Michieli, N.; Artiglia, L.; Scian, C.; Rizzi, G.A.; Granozzi, G.; Mattei, G.; Martucci, A.; Brusatin, G. Silver nanoprism arrays coupled to functional hybrid films for localized surface plasmon resonance-based detection of aromatic hydrocarbons. ACS Appl. Mater. Interfaces 2014, 6, 7773–7781. [Google Scholar] [CrossRef] [PubMed]
- Julián Fernández, C.; Manera, M.G.; Pellegrini, G.; Bersani, M.; Mattei, G.; Rella, R.; Vasanelli, L.; Mazzoldi, P. Surface plasmon resonance optical gas sensing of nanostructured ZnO films. Sens. Actuators B Chem. 2008, 130, 531–537. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaspera, E.D.; Martucci, A. Sol-Gel Thin Films for Plasmonic Gas Sensors. Sensors 2015, 15, 16910-16928. https://doi.org/10.3390/s150716910
Gaspera ED, Martucci A. Sol-Gel Thin Films for Plasmonic Gas Sensors. Sensors. 2015; 15(7):16910-16928. https://doi.org/10.3390/s150716910
Chicago/Turabian StyleGaspera, Enrico Della, and Alessandro Martucci. 2015. "Sol-Gel Thin Films for Plasmonic Gas Sensors" Sensors 15, no. 7: 16910-16928. https://doi.org/10.3390/s150716910
APA StyleGaspera, E. D., & Martucci, A. (2015). Sol-Gel Thin Films for Plasmonic Gas Sensors. Sensors, 15(7), 16910-16928. https://doi.org/10.3390/s150716910