Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios
Abstract
:1. Introduction
- High capacity regional coverage;
- Rapid deployment;
- Low power consumption;
- Potentially low cost.
2. Motivation and Related Works
2.1. Emergency Network Architectures
2.2. Energy-Efficient Transmissions
2.3. Integrated HAP/Satellite Networks
2.4. Contributions
- An IHS architecture for emergency scenarios is proposed for the first time, which consists of three segments. The architecture is explained in detail, and we conclude that the space segment, near space segment and ground segment will work closely together to provide information transfer services for remote sensor devices.
- The transmission power requirements of the terminal end and HAP end are investigated in a slow flat Rician fading channel. The gradient descent and differential equation methods are used to obtain the optimal transmitted power while maintaining a minimum bit error rate (BER) level.
- Using the concept of link-state advertisement (LSA), a novel energy-efficient transmission strategy for the energy-efficient path selection is designed. The strategy can significantly reduce the energy consumption, both of the terminal and HAP, which is demonstrated through in-depth numerical simulations.
Notation | Description | Notation | Description |
---|---|---|---|
The channel i | The path loss exponents of the channel i | ||
The receive antenna gain | The Rician factor of send-receive (S-R) channel | ||
The transmit antenna gain | The send-receive (S-R) distances | ||
The data rate | α | The mean channel power gain | |
The bit error rate | The energy of per bit | ||
ψ | The longitude | ϕ | The latitude |
The transmission power | The gradient operator | ||
E | The energy consumption | The optimal transmission path of the i-th terminal |
3. System Model
3.1. Space Segment
- Data back to the core network, i.e., the Ka/Ku band or laser backhaul link [30];
- Emergency links for the rescuers’ and victims’ terminals, i.e., the L/Sband links [20];
- Relay links from the HAPs, i.e., the Ka/Ku band or laser relay links [8];
- Broadcasting the LSA for the HAPs and terminals. The detail of the LSA is given in Section 4.1.
3.2. Near Space Segment
3.3. Ground Segment
- User sub-segment: the sensor devices and terminals of rescuers and victims in the remote disaster area;
- Core network sub-segment: the service provider and national rescue institute in the normal area.
3.4. Channel Model
4. Mathematical Formulation of the Optimization Problem
4.1. Link-State Advertisement
4.2. Transmission Power Requirements for the T-S Link
4.3. Transmission Power Requirements for Terminal-HAP-Satellite Path
5. Energy-Efficient Transmission Strategies
5.1. Energy Consumption
5.2. Path Selection
Algorithm 1. Adaptive algorithm for energy-efficient path selection. |
Inputs: LSAs, required BER ∊, required data rate |
Outputs: Optimal transmission power , minimum energy consumption , optimal path
|
6. Simulations and Results
6.1. Evaluation of a Single Terminal
Parameter | Value |
---|---|
Alt.of GEO Sat. | 35,786 km |
Gain of Sat. | 48.2 dB |
Lon. and Lat. of GEO Sat. | (14331 E, 0 N) |
Lon. Vector of HAP | (11808 E, 11838 E, 11841 E, 11823 E) |
Lat. Vector of HAP | (3950 N, 3951 N, 3955 N, 4002 N) |
Alt. of HAP | 22 km |
Lon. and Lat. of city | (11831 E, 3956 N) |
Alt. of city | 200 m |
Lon. and Lat. of terminal | (11822 E, 3941 N) |
Power required for terminal reception | 150 mW |
Power required for HAP reception | 150 mW |
Data rate | 1.544 Mbps |
Carrier frequency of link | 48 GHz |
Carrier frequency of , links | 3.4 GHz |
Gain of antennas | 42.3 dB |
Gain of terminal antenna | 23.7 dB |
Gain of antennas | 29.1 dB |
Vector of path loss exponents |
6.2. Evaluation of the Multiple Terminals
0 | 1 | 2 | 4 | 8 | 16 | ||
---|---|---|---|---|---|---|---|
Strategies | |||||||
Direct Path | 0 | 0 | 0 | 0 | 0 | 0 | |
Relay Path | 0 | ||||||
Adaptive Path | 0 |
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Celandroni, N.; Ferro, E.; Gotta, A.; Oligeri, G.; Roseti, C.; Luglio, M.; Bisio, I.; Cello, M.; Davoli, F.; Panagopoulos, A.D.; et al. A survey of architectures and scenarios in satellite-based wireless sensor networks: System design aspects. Int. J. Sat. Commun. Netw. 2013, 31, 1–38. [Google Scholar] [CrossRef]
- Baldini, G.; Karanasios, S.; Allen, D.; Vergari, F. Survey of wireless communication technologies for public safety. IEEE Commun. Surv. Tutor. 2014, 16, 619–641. [Google Scholar] [CrossRef]
- Dong, F.; Li, M.; Gong, X.; Li, H.; Gao, F. Diversity performance analysis on multiple HAP networks. Sensors 2015, 15, 15398–15418. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jiang, D. Integrated wireless sensor systems via near-space and satellite platforms: A review. IEEE Sens. J. 2014, 14, 3903–3914. [Google Scholar] [CrossRef]
- Chen, L.; Jia, X.; Meng, L.; Wang, L. Expedite privacy-preserving emergency communication scheme for VANETs. Int. J. Distrib. Sens. Netw. 2013, 2013. [Google Scholar] [CrossRef]
- Dong, F.; Huang, Q.; Li, H.; Kong, B.; Zhang, W. A novel M2M backbone network architecture. Int. J. Distrib. Sens. Netw. 2014, 2014. [Google Scholar] [CrossRef]
- Mohammed, A.; Mehmood, A.; Pavlidou, F.-N.; Mohorcic, M. The role of high-altitude platforms (HAPs) in the global wireless connectivity. IEEE Proc. 2011, 99, 1939–1953. [Google Scholar] [CrossRef]
- Dong, F.; Lv, J.; Gong, X.; Li, C. Optimization design of structure invulnerability in space information network. J. Commun. 2014, 35, 50–58. [Google Scholar]
- Grace, D.; Mohorcic, M. Broadband Communications via High-Altitude Platforms; John Wiley and Sons, Inc.: New York, NY, USA, 2011; pp. 115–117. [Google Scholar]
- Fan, Z.; Sun, H.; Wang, L. Research of the classification model based on dominance rough set approach for China emergency communication. Math. Probl. Eng. 2015, 15. [Google Scholar] [CrossRef]
- Karapantazis, S.; Pavlidou, F. Broadband communications via high-altitude platforms: A survey. IEEE Commun. Surv. Tutor. 2005, 7, 2–31. [Google Scholar] [CrossRef]
- Casoni, M.; Grazia, C.; Klapez, M.; Patriciello, N.; Amditis, A.; Sdongos, E. Integration of satellite and LTE for disaster recovery. IEEE Commun. Mag. 2015, 53, 47–53. [Google Scholar] [CrossRef]
- Deaton, J.D. High altitude platforms for disaster recovery: Capabilities, strategies, and techniques for emergency telecommunications. EURASIP J. Wirel. Commun. Netw. 2008, 8, 1–8. [Google Scholar] [CrossRef]
- Asensio, Á.; Blanco, T.; Blasco, R.; Marco, Á.; Casas, R. Managing emergency situations in the smart city: The smart signal. Sensors 2015, 15, 14370–14396. [Google Scholar]
- Aranti, S.; Sanctis, M.D.; Spinella, S.C.; Monti, M.; Cianca, E.; Molinaro, A.; Iera, A.; Ruggieri, M. Hybrid System HAP-WiFi for Incident Area Networks. In Proceedings of the ICST Personal Satellite Services, Rome, Italy, 4–5 February 2010; pp. 436–450.
- Lin, C.Y.; Chu, E.T.-H.; Ku, L.W.; Liu, J.W. Active disaster response system for a amart building. Sensors 2014, 14, 17451–17470. [Google Scholar] [CrossRef] [PubMed]
- Elhawary, M.; Haas, Z.J. Energy-efficient protocol for cooperative networks. IEEE ACM Trans. Netw. 2011, 19, 561–574. [Google Scholar] [CrossRef]
- Nasim, M.; Qaisar, S.; Lee, S. An energy efficient cooperative hierarchical MIMO clustering scheme for wireless sensor networks. Sensors 2012, 12, 92–114. [Google Scholar] [CrossRef] [PubMed]
- Kandeepan, S.; Gomez, K.; Reynaud, L.; Rasheed, T. Aerial-terrestrial communications: Terrestrial cooperation and energy-efficient transmissions to aerial base stations. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 2715–2735. [Google Scholar] [CrossRef]
- Alagoz, F.; Gür, G. Energy efficiency and satellite networking: A holistic overview. IEEE Proc. 2011, 99, 1954–1979. [Google Scholar] [CrossRef]
- Zhu, Y.; Xin, Y.; Kam, P.-Y. Optimal transmission strategies for rayleigh fading relay channels. IEEE Trans. Wirel. Commun. 2008, 7, 618–628. [Google Scholar]
- Madan, R.; Mehta, N.B.; Molisch, A.F.; Zhang, J. Energy-efficient cooperative relaying over fading channels with simple relay selection. IEEE Trans. Wirel. Commun. 2008, 7, 3013–3025. [Google Scholar]
- Dovis, F.; Fantini, R.; Mondin, M.; Savi, P. Small-scale fading for high-altitude platform (HAP) propagation channels. IEEE J. Sel. Areas Commun. 2002, 20, 641–647. [Google Scholar] [CrossRef]
- Supnithi, P.; Wongtrairat, W.; Tantaratana, S. Performance of M-PSK in mobile satellite communication over combined ionospheric scintillation and flat fading channels with MRC diversity. IEEE Trans. Wirel. Commun. 2009, 8, 3360–3364. [Google Scholar] [CrossRef]
- Zhu, L.; Yan, X.; Zhu, Y. High Altitude Platform-based Two-hop Relaying Emergency Communications Schemes. In Proceedings of the 5th International Conference on Wireless Communication, Network and Mobile Computing (WiCom’09), Beijing, China, 24–26 September 2009; pp. 1–4.
- Wang, X.; Gao, X.; Zong, R. Energy-Efficient Deployment of Airships for High Altitude Platforms: A Deterministic Annealing Approach. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM’11), Houston, TX, USA, 5–9 December 2011; pp. 1–6.
- Luglio, M.; Theodoridis, G.; Roseti, C.; Pavlidou, N. A TCP driven CAC scheme: Efficient resource utilization in a leaky HAP-satellite integrated scenario. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 885–898. [Google Scholar] [CrossRef] [Green Version]
- Pace, P.; Aloi, G. Disaster monitoring and mitigation using aerospace technologies and integrated telecommunication networks. IEEE Aerosp. Electron. Syst. Mag. 2008, 23, 3–9. [Google Scholar] [CrossRef]
- Wang, H.; Liu, A.; Pan, X.; Yang, J. Optimization of power allocation for multiusers in multi-spot-beam satellite communication systems. Math. Probl. Eng. 2014, 14. [Google Scholar] [CrossRef]
- Maleki, S.; Chatzinotas, S.; Evans, B.; Liolis, K.; Grotz, J.; Vanelli-Coralli, A.; Chuberre, N. Cognitive spectrum utilization in Ka band multibeam satellite communications. IEEE Commun. Mag. 2015, 53, 24–29. [Google Scholar] [CrossRef]
- Dong, F.; He, Y.; Zhou, X.; Yao, Q. Optimization and Design of HAP Broadband Communication Networks. In Proceedings of the IEEE 5th International Conference on Information Science and Technology (ICIST’15), Changsha, China, 24–26 April 2015; pp. 154–159.
- Aziz, M.R.K.; Iskandar, A.A. Channel Estimation for LTE Downlink in High Altitude Platforms (HAPs) Systems. In Proceedings of the International Conference on Information and Communication Technology (ICoICT’13), Bandung, Indonesia, 20–22 March 2013; pp. 182–186.
- Andreev, S.; Gerasimenko, M.; Galinina, O.; Koucheryavy, Y.; Himayat, N.; Yeh, S.-P.; Talwar, S. Intelligent access network selection in converged multi-radio heterogeneous networks. IEEE Wirel. Commun. 2014, 21, 86–96. [Google Scholar] [CrossRef]
- Lutz, E.; Cygan, D.; Dippold, M.; Dolainsky, F.; Papke, W. The land mobile satellite communication channel-recording, statistics, and channel model. IEEE Trans. Veh. Technol. 1991, 40, 375–386. [Google Scholar] [CrossRef]
- Rappaport, T. S. Wireless Communications: Principles and Practice, 2nd ed.; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1996; pp. 285–288. [Google Scholar]
- Hatsuda, T.; Hashimoto, K.; Masuda, J.; Murakami, J. Diversity systems comparison of satellite visibility improvement for designing mobile broadcasting satellite system. IEEE Trans. Antennas Propag. 2006, 54, 2365–2370. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, F.; Li, H.; Gong, X.; Liu, Q.; Wang, J. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios. Sensors 2015, 15, 22266-22290. https://doi.org/10.3390/s150922266
Dong F, Li H, Gong X, Liu Q, Wang J. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios. Sensors. 2015; 15(9):22266-22290. https://doi.org/10.3390/s150922266
Chicago/Turabian StyleDong, Feihong, Hongjun Li, Xiangwu Gong, Quan Liu, and Jingchao Wang. 2015. "Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios" Sensors 15, no. 9: 22266-22290. https://doi.org/10.3390/s150922266
APA StyleDong, F., Li, H., Gong, X., Liu, Q., & Wang, J. (2015). Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios. Sensors, 15(9), 22266-22290. https://doi.org/10.3390/s150922266