Improved Leg Tracking Considering Gait Phase and Spline-Based Interpolation during Turning Motion in Walk Tests
Abstract
:1. Introduction
2. System Overview
2.1. Configuration
Parameters | Values |
---|---|
Laser Wavelength | 905 nm, Class 1 |
Power Source | 12 V ± 10% |
Current Consumption | 0.7 A, max 1.0 A |
Detection Range | 0.1–30 m, max 60 m |
Measurement Accuracy | 0.1–10 m: ±0.03 m 10–30 m: ±0.05 m |
Scan Angle | 270° |
Angular Resolution | 0.25° (360°/1440) |
Scan Time | 25 ms (40 Hz) |
Interface | USB 2.0 |
Weight | 0.233 kg |
2.2. Algorithm
3. Human Walking Model
3.1. State Equation of the Kalman Filter
3.2. Gait Phase Identification
4. Leg Detection
5. Leg Tracking
5.1. Prediction
5.2. Data Association Considering Gait Phase
- ∙
- Phase 0 to Phase 5,
- ∙
- Phase 1 to Phases 0, 3, 4 and 5,
- ∙
- Phase 2 to Phases 1, 4 and 5,
- ∙
- Phase 3 to Phases 0, 1, 2 and 5,
- ∙
- Phase 4 to Phases 2, 3 and 5.
5.3. Correction
5.4. Catmull–Rom Spline-Based Interpolation during the Occlusion
5.5. Acceleration Input Estimation
6. Experiments
6.1. Experimental Conditions
Parameters | Values |
---|---|
Sampling Time Δt | 25 ms (40 Hz) |
Motion Covariance Q | diag(15.02, 15.02) |
Observation Covariance R | diag(0.042, 0.042) |
Threshold of the Speed in the Stance Phase vst_th | 0.47 |
Threshold of the Speed in the Swing Phase vsw_th | 0.93 |
Gate G (Probability PG = 0.999) | 13.82 |
Number of Steps for the Acceleration Function Nac | 40 |
6.2. Experimental Results
Method 1 | Method 2 | Method 3 (Proposal) | ||
---|---|---|---|---|
Data Association Considering Gait Phase | No | Yes | Yes | |
Catmull–Rom Spline-based Interpolation | No | No | Yes | |
Number of False Tracking | During Turning Motion | 12 | 0 | 0 |
During Walking Back to Chair | 0 | 2 | 1 | |
Number of Failure of the Stance Phase Identification During Turning Motion | 2 | 1 | 0 | |
Tracking Success Rate | 50.0% (14/28) | 89.3% (25/28) | 96.4% (27/28) |
6.3. Effectiveness of the Data Association Considering the Gait Phase
6.4. Effectiveness of the Catmull–Rom Spline-Based Interpolation
TUG Phase | Method 2 (without Interpolation) 25 Tracking Success Data | Method 3 (Proposal: with Interpolation) 27 Tracking Success Data | ||||
---|---|---|---|---|---|---|
Occlusion Rate | RMSE (m) | Occlusion Rate | RMSE (m) | |||
x-direction | y-direction | x-direction | y-direction | |||
Forward | 3.5% (225/6364) | 0.042 | 0.018 | 3.8% (264/6912) | 0.042 | 0.019 |
Turning | 11.3% (255/2264) | 0.069 | 0.062 | 12.3% (304/2462) | 0.055 | 0.049 |
Return | 5.1% (344/6686) | 0.053 | 0.028 | 5.5% (402/7294) | 0.047 | 0.025 |
Total | 5.4% (824/15314) | 0.051 | 0.032 | 5.8% (970/16668) | 0.047 | 0.028 |
Leg Observation State | Method 2 (without Interpolation) 25 Tracking Success Data | Method 3 (Proposal: with Interpolation) 27 Tracking Success Data | ||||
---|---|---|---|---|---|---|
Time Steps | RMSE (m) | Time Steps | RMSE (m) | |||
x-direction | y-direction | x-direction | y-direction | |||
Observable | 14490 | 0.047 | 0.027 | 15698 | 0.045 | 0.025 |
Unobservable | 824 | 0.102 | 0.081 | 970 | 0.066 | 0.052 |
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Deandrea, S.; Bravi, F.; Turati, F.; Lucenteforte, E.; La, V.C.; Negri, E. Risk factors for falls in older people in nursing homes and hospitals. A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2013, 56, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Deandrea, S.; Lucenteforte, E.; Bravi, F.; Foschi, R.; La, V.C.; Negri, E. Risk factors for falls in community-dwelling older people: A systematic review and meta-analysis. Epidemiology 2010, 21, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, B.R.; Rutjes, A.W.; Mendy, A.; Freund-Heritage, R.; Vieira, E.R. Can Falls Risk Prediction Tools Correctly Identify Fall-prone Elderly Rehabilitation Inpatients? A Systematic Review and Meta-Analysis. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, L.D.; Robertson, M.C.; Gillespie, W.J.; Sherrington, C.; Gates, S.; Clemson, L.M.; Lamb, S.E. Interventions for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2012, 9. [Google Scholar] [CrossRef]
- Leveille, S.G.; Jones, R.N.; Kiely, D.K.; Hausdorff, J.M.; Shmerling, R.H.; Guralnik, J.M.; Kiel, D.P.; Lipsitz, L.A.; Bean, J.F. Chronic musculoskeletal pain and the occurrence of falls in an older population. J. Am. Med. Assoc. 2009, 302, 2214–2221. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Global Report on Falls Prevention in Older Age; WHO Press: Geneva, Switzerland, 2008. [Google Scholar]
- Hauer, K.; Lamb, S.E.; Jorstad, E.C.; Todd, C.; Becker, C. Systematic review of definitions and methods of measuring falls in randomized controlled fall prevention trials. Age Aging 2006, 35, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, M.K.; Magnusson, H.; von Schewelov, T.; Rosengren, B.E. Prevention of falls in the elderly—A review. Osteoporos. Int. 2013, 24, 747–762. [Google Scholar] [CrossRef] [PubMed]
- Podsiadlo, D.; Richardson, S. The timed “up & go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [PubMed]
- Ministry of Health, Labour and Welfare, the manual of the physical fitness test. Available online: http://www.mhlw.go.jp/topics/2009/05/dl/tp0501-siryou3–5.pdf (accessed on 12 February 2014). (in Japanese).
- Melzer, I.; Shtilman, I.; Rosenblatt, N.; Oddsson, L.I. Reliability of voluntary step execution behavior under single and dual task conditions. J. NeuroEng. Rehabil. 2007, 4. [Google Scholar] [CrossRef] [PubMed]
- Kistler Instruments Ltd. Available online: http://www.kistler.com/us/en/index (accessed on 12 February 2014).
- Davis, R.B.; Õunpuu, S.; Tyburski, D.; Gage, J.R. A gait analysis data collection and reduction technique. J. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Vicon Motion Systems Ltd. Available online: http://vicon.com (accessed on 12 February 2014).
- Shull, P.B.; Jirattigalachote, W.; Hunt, M.A.; Cutkosky, M.R.; Delp, S.L. Quantified self and human movement: A review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait & Posture 2014, 40, 11–19. [Google Scholar]
- Adelsberger, R.; Theill, N.; Schumacher, V.; Arnrich, B.; Tröster, G. One IMU Is Sufficient: A Study Evaluating Effects of Dual-Tasks on Gait in Elderly People. In Wireless Mobile Communication and Healthcare; Godara, B., Nikita, K.S., Eds.; Springer Berlin Heidelberg: Berlin, Germany, 2013; Volume 61, pp. 51–60. [Google Scholar]
- Seel, T.; Raisch, J.; Schauer, T. IMU-Based Joint Angle Measurement for Gait Analysis. Sensors 2014, 14, 6891–6909. [Google Scholar] [CrossRef] [PubMed]
- Fino, P.C.; Frames, C.W.; Lockhart, T.E. Classifying Step and Spin Turns Using Wireless Gyroscopes and Implications for Fall Risk Assessments. Sensors 2015, 15, 10676–10685. [Google Scholar] [CrossRef] [PubMed]
- Hokuyo Automatic Co., Ltd. Available online: http://www.hokuyo-aut.jp (accessed on 12 February 2014).
- Microsoft. Kinect for Windows Sensor Components and Specifications, Microsoft Developer Network. Available online: http://msdn.microsoft.com/en-us/library/jj131033.aspx (accessed on 18 April 2015).
- Sabatini, A.M.; Colla, V. A method for sonar based recognition of walking people. Robot. Auton. Syst. 1998, 25, 117–126. [Google Scholar] [CrossRef]
- Ozaki, M.; Kakimuma, K.; Hashimoto, M.; Takahashi, K. Laser-Based Pedestrian Tracking in Outdoor Environments by Multiple Mobile Robots. Sensors 2012, 12, 14489–14507. [Google Scholar] [CrossRef] [PubMed]
- Schulz, D.; Burgard, W.; Fox, D.; Cremers, A.B. People Tracking with Mobile Robot using Sample-based Joint Probabilistic Data Association Filters. Int. J. Robot. Res. 2003, 22, 99–116. [Google Scholar] [CrossRef]
- Almeida, J.; Almeida, A.; Araujo, R. Tracking Multiple Moving Objects for Mobile Robotics Navigation. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation, Catania, Italy, 19–22 September 2005; pp. 203–210.
- Bellotto, N.; Hu, H. Multisensor-Based Human Detection and Tracking for Mobile Service Robots. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2009, 39, 167–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basso, F.; Munaro, M.; Michieletto, S.; Pagello, E.; Menegatti, E. Fast and Robust Multi-people Tracking from RGB-D Data for a Mobile Robot. In Proceedings of the 12th International Conference on Intelligent Autonomous Systems, Jeju Island, Korea, 26–29 June 2012.
- Shotton, J.; Fitzgibbon, A.; Cook, M.; Sharp, T.; Finocchino, M.; Moore, R.; Kipman, A.; Blake, A. Real-time Human Pose Recognition in Parts from Single Depth Images. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1297–1304.
- Ratsamee, P.; Mae, Y.; Ohara, K.; Takubo, T.; Arai, T. People Tracking with Body Pose Estimation for Human Path Prediction. In Proceedings of the IEEE International Conference on Mechatronics and Automation, Chengdu, China, 5–8 August 2012; pp. 1915–1920.
- Auvinet, E.; Multon, F.; Meunier, J. New Lower-Limb Gait Asymmetry Indices Based on a Depth Camera. Sensors 2015, 15, 4605–4623. [Google Scholar] [CrossRef] [PubMed]
- Gritti, A.P.; Tarabini, O.; Guzzi, J.; di Caro, G.A.; Caglioti, V.; Gambardella, L.M.; Giusti, A. Kinect-Based People Detection and Tracking from Small-Footprint Ground Robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 4096–4103.
- Pallejà, T.; Teixidò, M.; Tresanchez, M.; Palacìn, J. Measuring Gait Using a Ground Laser Range Sensor. Sensors 2009, 9, 9133–9146. [Google Scholar] [CrossRef] [PubMed]
- Teixidò, M.; Pallejà, T.; Tresanchez, M.; Noguès, M.; Palacìn, J. Measuring Oscillating Walking Paths with a LIDAR. Sensors 2011, 11, 5071–5086. [Google Scholar] [CrossRef] [PubMed]
- Konstantinova, P.; Udvarev, A.; Semerdjiev, T. A Study of a Target Tracking Algorithm Using Global Nearest Neighbor Approach. In Proceedings of the International Conference on Computer Systems and Technologies, Sofia, Bulgaria, 17–18 June 2003.
- Yorozu, A.; Nishiguchi, S.; Yamada, M.; Aoyama, T.; Moriguchi, T.; Takahashi, M. Gait Measurement System for the Multi-Target Stepping Task Using a Laser Range Sensor. Sensors 2015, 15, 11151–11168. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Abe, K.; Tsubouchi, T.; Ichinose, R.; Hosoda, Y.; Ohba, K. Collision-Free Navigation Based on People Tracking Algorithm with Biped Walking Model. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 2983–2989.
- Zhao, H.; Shibasaki, R. A Novel System for Tracking Pedestrians Using Multiple Single-Row Laser-Range Scanners. IEEE Trans. Syst. Man Cybern.-PART A: Syst. Hum. 2005, 35, 283–291. [Google Scholar] [CrossRef]
- Catmull, E.; Rom, R. A class of local interpolating splines. Comput. Aided Geom. Des. 1974, 74, 317–326. [Google Scholar]
- Matsumura, T.; Moriguchi, T.; Yamada, M.; Uemura, K.; Nishiguchi, S.; Aoyama, T.; Takahashi, M. Development of measurement system for task oriented step tracking using laser range finder. J. NeuroEng. Rehabil. 2013, 10. [Google Scholar] [CrossRef] [PubMed]
- Bar-Shalom, Y.; Willett, P.K.; Tian, X. Tracking and Data Fusion: A Handbook of Algorithms; YBS Publishing: Storrs, CT, USA, 2011. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yorozu, A.; Moriguchi, T.; Takahashi, M. Improved Leg Tracking Considering Gait Phase and Spline-Based Interpolation during Turning Motion in Walk Tests. Sensors 2015, 15, 22451-22472. https://doi.org/10.3390/s150922451
Yorozu A, Moriguchi T, Takahashi M. Improved Leg Tracking Considering Gait Phase and Spline-Based Interpolation during Turning Motion in Walk Tests. Sensors. 2015; 15(9):22451-22472. https://doi.org/10.3390/s150922451
Chicago/Turabian StyleYorozu, Ayanori, Toshiki Moriguchi, and Masaki Takahashi. 2015. "Improved Leg Tracking Considering Gait Phase and Spline-Based Interpolation during Turning Motion in Walk Tests" Sensors 15, no. 9: 22451-22472. https://doi.org/10.3390/s150922451
APA StyleYorozu, A., Moriguchi, T., & Takahashi, M. (2015). Improved Leg Tracking Considering Gait Phase and Spline-Based Interpolation during Turning Motion in Walk Tests. Sensors, 15(9), 22451-22472. https://doi.org/10.3390/s150922451