Wearable Sensing of In-Ear Pressure for Heart Rate Monitoring with a Piezoelectric Sensor
Abstract
:1. Introduction
2. Physiological Background and Piezoelectric Sensor
3. In-Ear Pressure Sensing Device
3.1. Apparatus Design Concepts
3.2. Hardware Circuit Module
3.3. Pulse-Peak Detection
Decision Rule | Description |
---|---|
# 1 | Are both the previous and next points lower than the current point? |
# 2 | Is it continuously descending until 50% of the “Initial Peak” value? |
# 3 | Is the distance between any continuous “Real Peaks” further than 250 ms? |
# 4 | Is it in “update mode”? |
# 5 | Is “Valid Peak” higher than the adaptive threshold? |
# 6 | Find the minimum point from “Valid Peak” within 150 ms in the forward direction. |
4. Validity Study
4.1. Study Design
N | Age | Height (cm) | Weight (kg) | |
---|---|---|---|---|
Male | 43 | 36.3 ± 5.6 | 172.9 ± 4.9 | 72.5 ± 11.6 |
Female | 15 | 31.7 ± 5.3 | 163.2 ± 3.7 | 53.5 ± 7.1 |
Total | 58 | 35.3 ± 5.8 | 170.6 ± 6.3 | 67.8 ± 13.4 |
4.2. Comparative Parameter
4.3. Evaluation
- TP—the number of EPWInterval (n) that satisfy the true detection condition,
- FP—the number of EPWInterval (n) that do not satisfy the true detection condition,
- FN—the number of ECGInterval (n) that do not satisfy the true detection condition.
5. Results and Discussion
No. of Peaks | No. of Intervals | Interval Length (samples) | Heart Rate (bpm) | |
---|---|---|---|---|
Dataset | 22.36 ± 0.67 | 21.36 ± 0.67 | 1920.71 ± 34.48 | 66.74 ± 1.82 |
Total | 1297 | 1239 | 111,401 | 66.74 |
TP (No. of Intervals) | FP (No. of Intervals) | FN (No. of Intervals) | |
---|---|---|---|
1204 | 35 | 34 | |
Sensitivity (%) | PPV (%) | MAD (samples) | ERNorm (%) |
97.25 | 97.18 | 0.62 | 0.68 |
6. Limitations
7. Conclusions
Author Contributions
Conflicts of Interest
References
- Mendis, S.; Puska, P.; Norrving, B. Global Atlas on Cardiovascular Disease Prevention and Control; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Cook, S.; Togni, M.; Schaub, M.C.; Wenaweser, P.; Hess, O.M. High heart rate: A cardiovascular risk factor? Eur. Heart J. 2006, 27, 2387–2393. [Google Scholar] [CrossRef] [PubMed]
- Pantelopoulos, A.; Bourbakis, N.G. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2010, 40, 1–12. [Google Scholar] [CrossRef]
- Pantelopoulos, A.; Bourbakis, N. A Survey on Wearable Biosensor Systems for Health Monitoring. In Proceedings of the 30th Annual International Conference of the IEEE EMBS, Vancouver, Canada, 21–24 August 2008; pp. 4887–4890.
- Asada, H.H.; Shaltis, P.; Reisner, A.; Rhee, S.; Hutchinson, R.C. Mobile monitoring with wearable photoplethysmographic biosensors. IEEE Eng. Med. Biol. Mag. 2003, 22, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Maeda, Y.; Sekine, M.; Yoshida, M. Wearable photoplethysmographic sensors—Past and present. Electronics 2014, 3, 282–302. [Google Scholar] [CrossRef]
- Venema, B.; Schiefer, J.; Blazek, V.; Blanik, N.; Leonhardt, S. Evaluating innovative in-ear pulse oximetry for unobtrusive cardiovascular and pulmonary monitoring during sleep. IEEE J. Trans. Eng. Health Med. 2013, 1. [Google Scholar] [CrossRef]
- Baig, M.M.; Gholamhosseini, H.; Connolly, M.J. A comprehensive survey of wearable and wireless ecg monitoring systems for older adults. Med. Biol. Eng. Comp. 2013, 51, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.; Estève, D.; Fourniols, J.-Y.; Escriba, C.; Campo, E. Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 2012, 56, 137–156. [Google Scholar] [CrossRef] [PubMed]
- Teichmann, D.; Matteis, D.D.; Bartelt, T.; Walter, M.; Leonhardt, S. A bendable and wearable cardiorespiratory monitoring device fusing two noncontact sensor principles. IEEE J. Biomed. Health Inf. 2015, 19, 784–793. [Google Scholar] [CrossRef] [PubMed]
- West, C. The temporal bone and the ear. J. Anat. 1950, 84, 57–58. [Google Scholar]
- Westerhof, N.; Sipkema, P.; Van Den Bos, G.; Elzinga, G. Forward and backward waves in the arterial system. Cardiovasc. Res. 1972, 6, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Denardo, S.J.; Nandyala, R.; Freeman, G.L.; Pierce, G.L.; Nichols, W.W. Pulse wave analysis of the aortic pressure waveform in severe left ventricular systolic dysfunction. Circ. Heart Fail. 2010, 3, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Niki, K.; Sugawara, M.; Chang, D.; Harada, A.; Okada, T.; Sakai, R.; Uchida, K.; Tanaka, R.; Mumford, C.E. A new noninvasive measurement system for wave intensity: Evaluation of carotid arterial wave intensity and reproducibility. Heart Vessels 2002, 17, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Reesink, K.D.; Hermeling, E.; Hoeberigs, M.C.; Reneman, R.S.; Hoeks, A.P. Carotid artery pulse wave time characteristics to quantify ventriculoarterial responses to orthostatic challenge. J. Appl. Phys. 2007, 102, 2128–2134. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, M.F.; Pauca, A.; Jiang, X.J. Pulse wave analysis. Br. J. Clin. Pharmacol. 2001, 51, 507–522. [Google Scholar] [CrossRef] [PubMed]
- Sirohi, J.; Chopra, I. Fundamental understanding of piezoelectric strain sensors. J. Intell. Mater. Syst. Struct. 2000, 11, 246–257. [Google Scholar] [CrossRef]
- Lally, J.; Cummiskey, D. Dynamic pressure calibration. Sens. Peterb. 2003, 20, 15–21. [Google Scholar]
- Measurement Specialities—Metallized Piezo Film Sheets. Available online: http://www.meas-spec.com/piezo-film-sensors.aspx (accessed on 31 August 2015).
- Phoenix Ambulatory Blood Pressure Monitor Project—Sub Project: Piezo Film Pulse Sensor. Available online: http://www.phoenix.tc-ieee.org/004_Piezo_Film_Blood_Flow_Sensor/Phoenix_PiezoPulse.htm (accessed on 5 June 2014).
- Jang, D.G.; Park, S.; Hahn, M.; Park, S.H. A real-time pulse peak detection algorithm for the photoplethysmogram. Int. J. Electron. Electr. Engin. 2014, 2, 45–49. [Google Scholar] [CrossRef]
- Losada, R.A. Digital Filters with Matlab®; MathWorks: Natick, MA, USA, 2008. [Google Scholar]
- Zong, W.; Heldt, T.; Moody, G.; Mark, R. An open-source algorithm to detect onset of arterial blood pressure pulses. In Proceedings of the Computers in Cardiology Conference 2003, Thessaloniki Chalkidiki, Greece, 21–24 September 2003; pp. 259–262.
- Physiolab: Ecg Kit. Available online: http://www.physiolab.co.kr/Eng_New/Product_education_assembly.aspx (accessed on 15 May 2015).
- Smith, R.P.; Argod, J.; Pépin, J.-L.; Lévy, P.A. Pulse transit time: An appraisal of potential clinical applications. Thorax 1999, 54, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.; Murray, A. Age-related changes in peripheral pulse timing characteristics at the ears, fingers and toes. J. Hum. Hypertens. 2002, 16, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Clifford, G.D. Ecg statistics, noise, artifacts, and missing data. In Advanced Methods and Tools for ECG Data Analysis; Artech House: London, UK, 2006; pp. 55–99. [Google Scholar]
- Jang, D.G.; Park, S.H.; Hahn, M. Framework for automatic delineation of second derivative of photoplethysmogram: A knowledge-based approach. J. Med. Biol. Eng. 2014, 34, 547–553. [Google Scholar]
- Bland, J.M.; Altman, D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Wikipedia: Heart Rate. Available online: https://en.wikipedia.org/wiki/Heart_rate (accessed on 19 June 2015).
- Arberet, S.; Lemay, M.; Renevey, P.; Sola, J.; Grossenbacher, O.; Andries, D.; Sartori, C.; Bertschi, M. Photoplethysmography-Based Ambulatory Heartbeat Monitoring Embedded into a Dedicated Bracelet. In Proceedings of Computing in Cardiology Conference (CinC) 2013, Zaragoza, Spain, 22–25 September 2013; pp. 935–938.
- O’Rourke, M.F. Time domain analysis of the arterial pulse in clinical medicine. Med. Boil. Eng. Comp. 2009, 47, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Applying the right statistics: Analyses of measurement studies. Ultrasound Obstet. Gyn. 2003, 22, 85–93. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-H.; Jang, D.-G.; Park, J.W.; Youm, S.-K. Wearable Sensing of In-Ear Pressure for Heart Rate Monitoring with a Piezoelectric Sensor. Sensors 2015, 15, 23402-23417. https://doi.org/10.3390/s150923402
Park J-H, Jang D-G, Park JW, Youm S-K. Wearable Sensing of In-Ear Pressure for Heart Rate Monitoring with a Piezoelectric Sensor. Sensors. 2015; 15(9):23402-23417. https://doi.org/10.3390/s150923402
Chicago/Turabian StylePark, Jang-Ho, Dae-Geun Jang, Jung Wook Park, and Se-Kyoung Youm. 2015. "Wearable Sensing of In-Ear Pressure for Heart Rate Monitoring with a Piezoelectric Sensor" Sensors 15, no. 9: 23402-23417. https://doi.org/10.3390/s150923402
APA StylePark, J. -H., Jang, D. -G., Park, J. W., & Youm, S. -K. (2015). Wearable Sensing of In-Ear Pressure for Heart Rate Monitoring with a Piezoelectric Sensor. Sensors, 15(9), 23402-23417. https://doi.org/10.3390/s150923402