Enhancement of Frequency Stability Using Synchronization of a Cantilever Array for MEMS-Based Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. CMOS-MEMS System Design and Fabrication
2.2. CMOS-MEMS System Electrical Characterization
2.3. CMOS-MEMS System Mass Resolution
3. Characterization of the Cantilever Array under Synchronization
3.1. Using an External Force Applied to One of the Individual Cantilevers, at the Same Frequency as the Modal Frequency of the Corresponding Cantilever
3.2. Using an External Force Applied to One of the Individual Cantilevers at the Self-Oscillating Frequency of the System
4. Discussion
4.1. Considerations about Synchronization Using an External Force
4.2. Considerations about Mass Sensor Performance
4.3. Towards a Thermomechanical Noise Limit?
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CMOS | Complementary Metal Oxide Semiconductor |
M/NEMS | Micro/Nano ElectroMechanical Systems |
TIA | TransImpedance Amplifier |
References
- Chaste, J.; Eichler, A.; Moser, J.; Ceballos, G.; Rurali, R.; Bachtold, A. A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 2012, 7, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Sansa, M.; Sage, E.; Bullard, E.C.; Gély, M.; Alava, T.; Colinet, E.; Naik, A.K.; Villanueva, L.G.; Duraffourg, L.; Roukes, M.L.; et al. Frequency fluctuations in silicon nanoresonators. Nat. Nanotechnol. 2016, 11, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Pikovsky, A.; Rosenblum, M.; Kurths, J. Synchronization, a Universal Concept in Nonlinear Sciences; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Huygens, C. Instructions concerning the use of pendulum-watches for finding the longitude at sea. Philos. Trans. R. Soc. Lond. 1669, 4, 937–976. [Google Scholar]
- Lifshitz, R.; Kenig, E.; Cross, M.C. Collective Dynamics in Arrays of Coupled Nonlinear Resonators. In Fluctuating Nonlinear Oscillators; Oxford University Press: Oxford, UK, 2012; Chapter 11. [Google Scholar]
- Stankovski, T.; McKlintock, P.; Stefanovska, A. Dynamical interference: Where phase synchronization and generalized synchronization meet. Phys. Rev. E 2014, 89, 062909. [Google Scholar] [CrossRef] [PubMed]
- Buks, E.; Roukes, M.L. Electrically tunable collective response in a coupled micromechanical array. J. Microelectromech. Syst. 2002, 11, 802–807. [Google Scholar] [CrossRef]
- Sato, M.; Hubbard, B.E.; Sievers, A.J. Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array. Phys. Rev. Lett. 2003, 90, 044102. [Google Scholar] [CrossRef] [PubMed]
- Baghelani, M.; Ebrahimi, A.; Ghavifekr, H.B. Design of RF MEMS based oscillatory neural network for ultra high speed associative memories. Neural Process. Lett. 2014, 40, 93–102. [Google Scholar] [CrossRef]
- Shim, S.; Imboden, M.; Mohanty, P. Synchronized oscillation in coupled nanomechanical oscillators. Science 2009, 316, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Ye, X.; Esashi, M.; Ono, T. Mechanically coupled synchronized resonators for resonant sensing applications. J. Micromech. Microeng. 2010, 20, 115001. [Google Scholar] [CrossRef]
- Cross, M.C.; Zumdieck, A.; Lifshitz, R.; Rogers, J.L. Synchronization by nonlinear frequency pulling. Phys. Rev. Lett. 2004, 93, 224101. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, D.K.; Woodhouse, J.; Seshia, A. Observation of locked phase dynamics and enhanced frequency stability in synchronized micromechanical oscillators. Phys. Rev. Lett. 2013, 111, 084101. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, D.K.; Woodhouse, J.; Seshia, A. Synchronization in a coupled architecture of microelectromechanical oscillators. J. Appl. Phys. 2014, 115, 164904. [Google Scholar] [CrossRef]
- Thiruvenkatanathan, P.; Yan, J.; Woodhouse, J.; Seshia, A. Enhancing Parametric Sensitivity in Electrically Coupled MEMS Resonators. J. Micromech. Syst. 2009, 18, 1077–1086. [Google Scholar] [CrossRef]
- Zhao, C.; Wood, G.S.; Xie, J.; Chang, H.; Pu, S.H.; Kraft, M. A three degree-of-freedom weakly coupled resonator sensor with enhanced stiffness sensitivity. J. Microelectromech. Syst. 2016, 25, 38–51. [Google Scholar] [CrossRef]
- Almog, R.; Zaitsev, S.; Shtempluck, O.; Buks, E. Noise squeezing in a nanomechanical Duffing resonator. Phys. Rev. Lett. 2007, 98, 078103. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, L.G.; Kenig, E.; Karabalin, R.B.; Matheny, M.H.; Lifshitz, R.; Cross, M.C.; Roukes, M.L. Surpassing fundamental limits of oscillators using nonlinear resonators. Phys. Rev. Lett. 2013, 110, 177208. [Google Scholar] [CrossRef] [PubMed]
- Kacem, N.; Baguet, S.; Duraffourg, L.; Jourdan, G.; Dufour, R.; Hentz, S. Overcoming limitations of nanomechanical resonatorswith simultaneous resonances. Appl. Phys. Lett. 2015, 107, 073105. [Google Scholar] [CrossRef] [Green Version]
- AMS. Available online: www.ams.com (accessed on 6 May 2016).
- Verd, J.; Uranga, A.; Abadal, G.; Teva, J.; Torres, F.; López, J.L.; Pérez-Murano, F.; Esteve, J.; Barniol, N. Monolithic CMOS MEMS oscillator circuit for sensing in the attogram range. IEEE Electron Device Lett. 2008, 29, 146–148. [Google Scholar] [CrossRef]
Measure Type | Frequency Dispersion at 1 s Averaging Time | Frequency Dispersion at 100 s Averaging Time |
---|---|---|
Without stimulation | 0.3 Hz | 6.8 Hz |
Stimulation at cantilever number 2 at its modal frequency | 0.016 Hz | 0.004 Hz |
Stimulation at cantilever number 4 at its modal frequency | 0.017 Hz | 0.0011 Hz |
Stimulation at cantilever number 2 at the self-oscillation frequency | 0.013 Hz | 0.0013 Hz |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, F.; Uranga, A.; Riverola, M.; Sobreviela, G.; Barniol, N. Enhancement of Frequency Stability Using Synchronization of a Cantilever Array for MEMS-Based Sensors. Sensors 2016, 16, 1690. https://doi.org/10.3390/s16101690
Torres F, Uranga A, Riverola M, Sobreviela G, Barniol N. Enhancement of Frequency Stability Using Synchronization of a Cantilever Array for MEMS-Based Sensors. Sensors. 2016; 16(10):1690. https://doi.org/10.3390/s16101690
Chicago/Turabian StyleTorres, Francesc, Arantxa Uranga, Martí Riverola, Guillermo Sobreviela, and Núria Barniol. 2016. "Enhancement of Frequency Stability Using Synchronization of a Cantilever Array for MEMS-Based Sensors" Sensors 16, no. 10: 1690. https://doi.org/10.3390/s16101690
APA StyleTorres, F., Uranga, A., Riverola, M., Sobreviela, G., & Barniol, N. (2016). Enhancement of Frequency Stability Using Synchronization of a Cantilever Array for MEMS-Based Sensors. Sensors, 16(10), 1690. https://doi.org/10.3390/s16101690