Selectivity Enhancement in Molecularly Imprinted Polymers for Binding of Bisphenol A
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apparatus and Analytical Instruments
2.3. Preparations of MIP and NIP Particles
2.4. Diazomethane Preparation and Treatment of MIP and NIP Particles
2.5. Competitive CE-UV Binding Tests
2.6. Electrophoretic Mobility of Polymers
3. Results and Discussion
3.1. Optimization of Template to Functional Monomer Molar Ratio
3.2. Esterification of MIPs with Diazomethane
3.3. Average Size of MIPs and NIPs Vs TMIPs and NTIPs
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AIBN | 2,2′-azobis(2-methylpropionitrile) |
BFN | baclofen |
BGE | background electrolyte |
BPA | bisphenol A |
CE | capillary electrophoresis |
DDW | distilled deionized water |
DFC | diclofenac sodium salt |
DLS | dynamic light scattering |
EGDMA | ethylene glycol dimethacrylate |
HPLC | high performance liquid chromatography |
Kd | dissociation constant |
Kow | octanol-water partitioning coefficient |
MAA | methacrylic acid |
MF | metformin hydrochloride |
MIP | molecularly imprinted polymer |
NIP | non-imprinted polymer |
P | partition coefficient |
SSCM | site-selective chemical modification |
SEM | scanning electron microscopy |
TEA | triethylamine |
TMIP | treated molecularly imprinted polymer |
TNIP | treated non-imprinted polymer |
UV | ultraviolet |
References
- Vandenberg, L.N.; Prins, G.S. Clarity in the face of confusion: New studies tip the scales on bisphenol A. Andrology 2016, 4, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Vandenberg, L.N.; Maffini, M.V.; Sonnenschein, C.; Rubin, B.S.; Soto, A.M. Bisphenol-A and the great divide: A review of controversies in the field of endocrine disruption. Endocr. Rev. 2009, 30, 75–95. [Google Scholar] [CrossRef] [PubMed]
- Latif, U.; Qian, J.; Can, S.; Dickert, F.L. Biomimetic receptors for bioanalyte detection by quartz crystal microbalances—From molecules to cells. Sensors 2014, 14, 23419–23438. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, A.; Koibuchi, N.; Oka, J.; Taguchi, M.; Shishiba, Y.; Ozawa, Y. Bisphenol A, an environmental estrogen, activates the human orphan nuclear receptor, steroid and xenobiotic receptor-mediated transcription. Eur. J. Endocrinol. 2001, 707, 155–163. [Google Scholar] [CrossRef]
- Seachrist, D.D.; Bonk, K.W.; Ho, M.; Prins, S.; Soto, A.M.; Keri, R.A. A review of the carcinogenic potential of bisphenol A. Reprod. Toxicol. 2016, 59, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Choi, Y.S.; Luu, H.M.D.; Guo, J. Determination of total leachable bisphenol A from polysulfone membranes based on multiple consecutive extractions. Talanta 2012, 101, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Eladak, S.; Grisin, T.; Moison, D.; Guerquin, M.J.; N’Tumba-Byn, T.; Pozzi-Gaudin, S.; Benachi, A.; Livera, G.; Rouiller-Fabre, V.; Habert, R. A new chapter in the bisphenol A story: Bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil. Steril. 2015, 103, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Global BPA Production to Exceed 5.4 Million Tonnes by 2015, According to in-Demand Report by Merchant Research & Consulting. Available online: http://www.prweb.com/releases/2014/04/prweb11761146.htm (accessed on 5 June 2016).
- Umar, M.; Roddick, F.; Fan, L.; Aziz, H.A. Application of ozone for the removal of bisphenol A from water and wastewater—A review. Chemosphere 2013, 90, 2197–2207. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.M.; Yang, J.; Ma, W.Q.; Ma, J.; Feng, J.; Liu, X.L. The selective binding character of a molecular imprinted particle for bisphenol A from water. Water Res. 2014, 50, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Rocha, S.; Domingues, V.F.; Pinho, C.; Fernandes, V.C.; Delerue-Matos, C.; Gameiro, P.; Mansilha, C. Occurrence of bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol in Portuguese Rivers. Bull. Environ. Contam. Toxicol. 2013, 90, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.R.; Echevarria, J.; Wince-Smith, D.L. 2013 Global Manufacturing Competitiveness Index. Available online: https://www2.deloitte.com/content/dam/Deloitte/global/Documents/Manufacturing/gx_2013%20Global%20Manufacturing%20Competitiveness%20Index_11_15_12.pdf (accessed on 5 June 2016).
- Xue, X.F.; Wu, F.; Deng, N.S. Determination of endocrine disrupting compounds in rivers and lakes of Wuhan City, China. J. Luoyang Univ. 2005, 33–36. [Google Scholar]
- Quednow, K.; Püttmann, W. Endocrine disruptors in freshwater streams of Hesse, Germany: Changes in concentration levels in the time span from 2003 to 2005. Environ. Pollut. 2008, 152, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Kashiwada, S.; Ishikawa, H.; Miyamoto, N.; Ohnishi, Y.; Magara, Y. Fish test for endocrine-disruption and estimation of water quality of Japanese rivers. Water Res. 2002, 36, 2161–2166. [Google Scholar] [CrossRef]
- Tsai, W.T. Human health risk on environmental exposure to bisphenol A: A review. J. Environ. Sci. Health Part C 2006, 2, 225–255. [Google Scholar] [CrossRef] [PubMed]
- Kamaraj, M.; Salam, H.A.; Sivaraj, R.; Venckatesh, R. Detection of bisphenol A in various environment samples collected from Tamil Nadu, India by solid-phase extraction and GC analysis. Adv. Biores. 2013, 4, 59–64. [Google Scholar]
- Mohapatra, D.P.; Brar, S.K.; Tyagi, R.D.; Surampalli, R.Y. Occurrence of bisphenol A in wastewater and wastewater sludge of CUQ treatment plant. J. Xenobiot. 2011, 1, 9–16. [Google Scholar] [CrossRef]
- Bolognesi, C.; Castle, L.; Cravedi, J.P.; Engel, K.H.; Fowler, P.; Franz, R.; Grob, K.; Gürtler, R.; Husøy, T.; Mennes, W.; et al. Scientific opinion on the risks to public health related to the presence of bisphenol A in foodstuffs. EFSA J. 2015, 13, 3978. [Google Scholar]
- Hass, U.; Christiansen, S.; Boberg, J.; Rasmussen, M.G.; Mandrup, K.; Axelstad, M. Low-dose effect of developmental bisphenol A exposure on sperm count and behaviour in rats. Andrology 2016, 4, 594–607. [Google Scholar] [CrossRef] [PubMed]
- Mandrup, K.; Boberg, J.; Krag, I.L.; Christiansen, S.; Hass, U. Low-dose effects of bisphenol A on mammary gland development in rats. Andrology 2016, 4, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Gerona, R.R.; Pan, J.; Zota, A.R.; Schwartz, J.M.; Friesen, M.; Taylor, J.A.; Hunt, P.A.; Woodruff, T.J. Direct measurement of bisphenol A (BPA), BPA glucuronide and BPA sulfate in a diverse and low-income population of pregnant women reveals high exposure, with potential implications for previous exposure estimates: A cross-sectional study. Environ. Health 2016, 15, 50. [Google Scholar] [CrossRef] [PubMed]
- Stacy, S.L.; Eliot, M.; Calafat, A.M.; Chen, A.; Lanphear, B.P.; Hauser, R.; Papandonatos, G.D.; Sathyanarayana, S.; Ye, X.; Yolton, K.; et al. Patterns, variability, and predictors of urinary bisphenol A concentrations during childhood. Environ. Sci. Technol. 2016, 50, 5981–5990. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhong, G.; Liu, Z.; Meng, M.; Liu, F.; Ni, L. Facile synthesis of novel photoresponsive mesoporous molecularly imprinted polymers for photo-regulated selective separation of bisphenol A. Chem. Eng. J. 2016, 296, 437–446. [Google Scholar] [CrossRef]
- Takeuchi, T.; Hayashi, T.; Ichikawa, S.; Kaji, A.; Masui, M.; Matsumoto, H.; Sasao, R. Molecularly imprinted tailor-made functional polymer receptors for highly sensitive and selective separation and detection of target molecules. Chromatography 2016, 37, 43–64. [Google Scholar] [CrossRef]
- Wang, Y.; Ge, S.; Liu, H.; Yu, J.; Yan, M. Paper-based colorimetric analytical device based on molecularly imprinted polymers. Nanomed.: Nanotechnol. Biol. Med. 2016, 12, 534. [Google Scholar] [CrossRef]
- Tan, Y.; Jin, J.; Zhang, S.; Shi, Z.; Wang, J.; Zhang, J.; Pu, W.; Yang, C. Electrochemical determination of bisphenol A using a molecularly imprinted chitosan-acetylene black composite film modified glassy carbon electrode. Electroanal 2015, 28, 189–196. [Google Scholar] [CrossRef]
- Tan, F.; Cong, L.; Li, X.; Zhao, Q.; Zhao, H.; Quan, X.; Chen, J. An electrochemical sensor based on molecularly imprinted polypyrrole/graphene quantum dots composite for detection of bisphenol A in water samples. Sens. Actuators B Chem. 2016, 233, 599–606. [Google Scholar] [CrossRef]
- Dadkhah, S.; Ziaei, E.; Mehdinia, A.; Kayyal, T.B.; Jabbari, A. A glassy carbon electrode modified with amino-functionalized graphene oxide and molecularly imprinted polymer for electrochemical sensing of bisphenol A. Microchim. Acta 2016, 183, 1933–1941. [Google Scholar] [CrossRef]
- Deng, C.; Zhong, Y.; He, Y.; Ge, Y.; Song, G. Selective determination of trace bisphenol A using molecularly imprinted silica nanoparticles containing quenchable fluorescent silver nanoclusters. Microchim. Acta 2016, 183, 431–439. [Google Scholar] [CrossRef]
- Liu, G.; Chen, Z.; Jiang, X.; Feng, D.Q.; Zhao, J.; Fan, D.; Wang, W. In-situ hydrothermal synthesis of molecularly imprinted polymers coated carbon dots for fluorescent detection of bisphenol A. Sens. Actuators B Chem. 2016, 228, 302–307. [Google Scholar] [CrossRef]
- Haupt, K.; Mosbach, K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 2000, 100, 2495–2504. [Google Scholar] [CrossRef] [PubMed]
- Andersson, L.I. Molecular imprinting: Developments and applications in the analytical chemistry field. J. Chromatogr. B 2000, 745, 3–13. [Google Scholar] [CrossRef]
- Biotage: MIPs—Molecularly Imprinted Polymers: Purification at the Molecular Level. Available online: http://www.biotage.com/product-page/mips---molecularly-imprinted-polymers (accessed on 5 June 2016).
- Byrne, M.E.; Park, K.; Peppas, N.A. Molecular imprinting within hydrogels. Adv. Drug Deliv. Rev. 2002, 54, 149–161. [Google Scholar] [CrossRef]
- Greene, N.T.; Shimizu, K.D. Colorimetric molecularly imprinted polymer sensor array using dye displacement. J. Am. Chem. Soc. 2005, 127, 5695–5700. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zhang, L.; Chen, C.; Zhou, J. Determination of bisphenol A using a molecularly imprinted polymer surface plasmon resonance sensor. Anal. Lett. 2015, 48, 1537–1550. [Google Scholar] [CrossRef]
- Shaikh, H.; Sener, G.; Memon, N.; Bhanger, M.I.; Nizamani, S.M.; Uzek, R.; Denizli, A. Molecularly imprinted surface plasmon resonance based sensing of bisphenol A for its selective detection in aqueous systems. Anal. Methods 2015, 7, 4661–4670. [Google Scholar] [CrossRef]
- Umpleby, R.J.; Rushton, G.T.; Shah, R.N.; Rampey, A.M.; Bradshaw, J.C.; Berch, J.K.; Shimizu, K.D. Recognition directed site-selective chemical modification of molecularly imprinted polymers. Macromolecules 2001, 34, 8446–8452. [Google Scholar] [CrossRef]
- Alenazi, N.A.; Lai, E.P.C.; Manthorpe, J.M. Enhanced selectivity of molecularly imprinted polymer towards target molecule by esterification of non-specific binding sites with diazomethane. J. Mol. Recognit. 2014, 27, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Alenazi, N.A.; Manthorpe, J.M.; Lai, E.P.C. Selective extraction of BPA in milk analysis by capillary electrophoresis using a chemically modified molecularly imprinted polymer. Food Control 2015, 50, 778–783. [Google Scholar] [CrossRef]
- Duan, F.; Chen, C.; Zhao, X.; Yang, Y.; Liu, X.; Qin, Y. Water-compatible surface molecularly imprinted polymers with synergy of bi-functional monomers for enhanced selective adsorption of bisphenol A from aqueous solution. Environ. Sci. Nano 2016, 3, 213–222. [Google Scholar] [CrossRef]
- Li, H.; He, H.; Huang, J.; Wang, C.Z.; Gu, X.; Gao, Y.; Zhang, H.; Du, S.; Chen, L.; Yuan, C.S. A novel molecularly imprinted method with computational simulation for the affinity isolation and knockout of baicalein from Scutellaria baicalensis. Biomed. Chromatogr. 2016, 30, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Scudellari, M. Drugging the Environment. Available online: http://www.the-scientist.com/?articles.view/articleNo/43615/title/Drugging-the-Environment/ (accessed on 14 July 2016).
- De Boer, T.J.; Backer, H.J. p-Tolylsulfonylmethylnitrosamide. Org. Synth. 1954, 34, 96–99. [Google Scholar]
- Diazald® and Diazomethane Generators. Sigma-Aldrich Technical Bulletin AL-180, 2007. Available online: http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Aldrich/Bulletin/al_techbull_al180.pdf (accessed on 5 June 2016).
- Hu, M.; Zhang, Y.; Yang, J.; Zhou, X.; Wei, Z.; Ding, X.; Zhang, Y. Rapid fabrication of molecularly imprinted polymer fibers for solid phase microextraction of bisphenol A. Chin. J. Chromatogr. 2015, 33, 123–131. [Google Scholar] [CrossRef]
- Vasapollo, G.; Del Sole, R.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly imprinted polymers, present and future prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. [Google Scholar] [CrossRef] [PubMed]
- Drug Bank. Baclofen. Available online: http://www.drugbank.ca/drugs/DB00181 (accessed on 5 June 2016).
- Rykowska, I.; Wasiak, W. Properties, threats and methods of analysis of bisphenol A and its derivatives. Acta Chromatogr. 2006, 16, 7–27. [Google Scholar]
- Cousins, I.T.; Staples, C.A.; Kle, G.M.; Mackay, D. A multimedia assessment of the environmental fate of bisphenol A. Hum. Ecol. Risk Assess. 2002, 8, 1107–1135. [Google Scholar] [CrossRef]
- Diclofenac Sodium. Available online: https://dailymed.nlm.nih.gov/dailymed/archives/fdaDrugInfo.cfm?archiveid=3007 (accessed on 5 June 2016).
- Marks, H.L.; Pishko, M.V.; Jackson, G.W.; Coté, G.L. Rational design of a bisphenol A aptamer selective surface-enhanced Raman scattering nanoprobe. Anal. Chem. 2014, 86, 11614–11619. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alenazi, N.A.; Manthorpe, J.M.; Lai, E.P.C. Selectivity Enhancement in Molecularly Imprinted Polymers for Binding of Bisphenol A. Sensors 2016, 16, 1697. https://doi.org/10.3390/s16101697
Alenazi NA, Manthorpe JM, Lai EPC. Selectivity Enhancement in Molecularly Imprinted Polymers for Binding of Bisphenol A. Sensors. 2016; 16(10):1697. https://doi.org/10.3390/s16101697
Chicago/Turabian StyleAlenazi, Noof A., Jeffrey M. Manthorpe, and Edward P. C. Lai. 2016. "Selectivity Enhancement in Molecularly Imprinted Polymers for Binding of Bisphenol A" Sensors 16, no. 10: 1697. https://doi.org/10.3390/s16101697
APA StyleAlenazi, N. A., Manthorpe, J. M., & Lai, E. P. C. (2016). Selectivity Enhancement in Molecularly Imprinted Polymers for Binding of Bisphenol A. Sensors, 16(10), 1697. https://doi.org/10.3390/s16101697