Label-Free Fluorescent Detection of Trypsin Activity Based on DNA-Stabilized Silver Nanocluster-Peptide Conjugates
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Materials
2.2. Synthesis of dC12-AgNCs
2.3. Optimal Concentration of the Peptide
2.4. Fluorescence Quenching by GO
2.5. Determination of Trypsin Activity and Inhibition
2.6. Dynamic Detection of Trypsin
2.7. Determination of Trypsin in Serum
3. Results and Discussion
3.1. Principle Design and Feasibility
3.2. Interaction of dC12-AgNCs with Peptide
3.3. Assay of Trypsin Activity
3.4. Inhibition Assay of Trypsin
3.5. Detection of Trypsin in Human Serum
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rawlings, N.D.; Barrett, A.J. Families of serine peptidases. Method Enzymol. 1994, 244, 19–61. [Google Scholar]
- Hirota, M.; Ohmuraya, M.; Baba, H. The role of trypsin, trypsin inhibitor, and trypsin receptor in the onset and aggravation of pancreatitis. J. Gastroenterol. 2006, 41, 832–836. [Google Scholar] [CrossRef] [PubMed]
- Artigas, J.; Garcia, M.E.; Faure, M.; Gimeno, A. Serum trypsin levels in acute pancreatic and non-pancreatic abdominal conditions. Postgrad. Med. J. 1981, 57, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Byrne, M.F.; Mitchell, R.M.; Stiffler, H.; Jowell, P.S.; Branch, M.S.; Pappas, T.N.; Tyler, D.; Baillie, J. Extensive investigation of patients with mild elevations of serum amylase and/or lipase is ‘low yield’. Can. J. Gastroenterol. 2002, 16, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Temler, R.S.; Felber, J.P. Radioimmunoassay of human plasma trypsin. Biochim. Biophys. Acta 1976, 445, 720–728. [Google Scholar] [CrossRef]
- Ding, X.; Ge, D.; Yang, K.L. Colorimetric protease assay by using gold nanoparticles and oligopeptides. Sens. Actuators B Chem. 2014, 201, 234–239. [Google Scholar] [CrossRef]
- Miao, P.; Liu, T.; Li, X.; Ning, L.; Yin, J.; Han, K. Highly sensitive, label-free colorimetric assay of trypsin using silver nanoparticles. Biosens. Bioelectron. 2013, 49, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Stoytcheva, M.; Zlatev, R.; Cosnier, S.; Arredondo, M. Square wave voltammetric determination of trypsin activity. Electrochim. Acta 2012, 76, 43–47. [Google Scholar] [CrossRef]
- Gu, X.; Yang, G.; Zhang, G.; Zhang, D.; Zhu, D. A new fluorescence turn-on assay for trypsin and inhibitor screening based on graphene oxide. ACS Appl. Mater. Interfaces 2011, 3, 1175–1179. [Google Scholar] [CrossRef] [PubMed]
- Algar, W.R.; Malonoski, A.; Deschamps, J.R.; Blanco-Canosa, J.B.; Susumu, K.; Stewart, M.H.; Johnson, B.J.; Dawson, P.E.; Medintz, I.L. Proteolytic activity at quantum dot-conjugates: Kinetic analysis reveals enhanced enzyme activity and localized interfacial “hopping”. Nano Lett. 2012, 12, 3793–3802. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.X.; Tan, Y.; Zhang, C.L.; Wu, J.T.; Mei, L.; Jiang, Y.Y.; Tan, C.Y. A real-time fluorescence turn-on assay for trypsin based on a conjugated polyelectrolyte. J. Mater. Chem. B 2013, 1, 1402–1405. [Google Scholar] [CrossRef]
- Hong, M.L.; Li, L.J.; Han, H.X.; Chu, X. A label-free fluorescence assay for trypsin based on the electron transfer between oligonucleotide-stabilized Ag nanoclusters and cytochrome c. Anal. Sci. 2014, 30, 811–815. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.J.; Li, X.Y.; Li, L.J.; Liu, H.W.; Sun, A.M.; Liu, K.J. A sensitive assay for trypsin using poly(thymine)-templated copper nanoparticles as fluorescent probes. Analyst 2015, 140, 1871–1875. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, E.; Avlonitis, N.; Murray, A.F.; Mount, A.R.; Bradley, M. Methylene blue not ferrocene: Optimal reporters for electrochemical detection of protease activity. Biosens. Bioelectron. 2016. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Yang, K.L. Polyethylene glycol (PEG) gel arrays for differentiating oligopeptide fragments and on-chip protease assays. Biosens. Bioelectron. 2016, 77, 1126–1133. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, B.; Ding, J.; Liu, J. Fluorescent sensors using DNA-functionalized graphene oxide. Anal. Bioanal. Chem. 2014, 406, 6885–6902. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.T.; Lan, G.Y.; Chen, W.Y.; Chang, H.T. Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid. Anal. Chem. 2010, 82, 8566–8572. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Y.; Lan, G.Y.; Chang, H.T. Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. Anal. Chem. 2011, 83, 9450–9455. [Google Scholar] [CrossRef] [PubMed]
- Yeh, H.C.; Sharma, J.; Shih, I.M.; Vu, D.M.; Martinez, J.S.; Werner, J.H. A fluorescence light-up Ag nanocluster probe that discriminates single-nucleotide variants by emission color. J. Am. Chem. Soc. 2012, 134, 11550–11558. [Google Scholar] [CrossRef] [PubMed]
- Dadmehr, M.; Hosseini, M.; Hosseinkhani, S.; Ganjali, M.R.; Sheikhnejad, R. Label free colorimetric and fluorimetric direct detection of methylated DNA based on silver nanoclusters for cancer early diagnosis. Biosens. Bioelectron. 2015, 73, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Park, H.G. A DNA-templated silver nanocluster probe for label-free, turn-on fluorescence-based screening of homo-adenine binding molecules. Biosens. Bioelectron. 2015, 64, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, F.; Niazov-Elkan, A.; Guo, W.; Willner, I. Probing biocatalytic transformations with luminescent DNA/silver nanoclusters. Nano Lett. 2012, 13, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Lai, H.; Huang, R.; Zhao, C.; Wang, Y.; Weng, X.; Zhou, X. DNA methyltransferase activity detection based on fluorescent silver nanocluster hairpin-shaped DNA probe with 5’-C-rich/G-rich-3’ tails. Biosens. Bioelectron. 2015, 68, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wang, K.; Zhu, X.; Xie, M. A label-free kissing complexes-induced fluorescence aptasensor using DNA-templated silver nanoclusters as a signal transducer. Biosens. Bioelectron. 2016, 78, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhong, X.; Cheng, F.; Zhang, J.R.; Jiang, L.P.; Zhu, J.J. One-pot synthesis of aptamer-functionalized silver nanoclusters for cell-type-specific imaging. Anal. Chem. 2012, 84, 4140–4146. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Pu, F.; Lin, Y.; Ren, J.; Qu, X. Modulating DNA-templated silver nanoclusters for fluorescence turn-on detection of thiol compounds. Chem. Commun. 2011, 47, 3487–3489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.D.; Cai, Y.N.; Qi, Z.L.; Lu, L.; Qian, Y.X. DNA-templated silver nanoclusters for fluorescence turn-on assay of acetylcholinesterase activity. Anal. Chem. 2013, 85, 8455–8461. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. DNA-stabilized, fluorescent, metal nanoclusters for biosensor development. Trac-Trend. Anal. Chem. 2014, 58, 99–111. [Google Scholar] [CrossRef]
- Nourbakhsh, A.; Cantoro, M.; Vosch, T.; Pourtois, G.; Clemente, F.; van der Veen, M.H.; Hofkens, J.; Heyns, M.M.; Gendt, S.D.; Sels, B.F. Bandgap opening in oxygen plasma-treated graphene. Nanotechnology 2010, 21. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.H.; Yang, H.H.; Zhu, C.L.; Chen, X.; Chen, G.N. A graphene platform for sensing biomolecules. Angew. Chem. 2009, 121, 4879–4881. [Google Scholar] [CrossRef]
- Liu, X.; Wang, F.; Aizen, R.; Yehezkeli, O.; Willner, I. Graphene oxide/nucleic-acid-stabilized silver nanoclusters: functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs. J. Am. Chem. Soc. 2013, 135, 11832–11839. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yin, B.C.; Wang, X.F.; Ye, B.C. Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity. Chem. Commun. 2011, 47, 2399–2401. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.D.; Cong, V.T.; Baek, C.; Min, J. Fabrication of peptide stabilized fluorescent gold nanocluster/graphene oxide nanocomplex and its application in turn-on detection of metalloproteinase-9. Biosens. Bioelectron. 2015. [Google Scholar] [CrossRef] [PubMed]
- Song, E.; Cheng, D.; Song, Y.; Jiang, M.; Yu, J.; Wang, Y. A graphene oxide-based FRET sensor for rapid and sensitive detection of matrix metalloproteinase 2 in human serum sample. Biosens. Bioelectron. 2013, 47, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xu, X.; Liu, W.; Liu, X.; Nie, Z.; Qing, M.; Nie, L.; Yao, S. Graphene oxide-peptide nanocomplex as a versatile fluorescence probe of protein kinase activity based on phosphorylation protection against carboxypeptidase digestion. Anal. Chem. 2013, 85, 5746–5754. [Google Scholar] [CrossRef] [PubMed]
- Petty, J.T.; Zheng, J.; Hud, N.V.; Dickson, R.M. DNA-templated Ag nanocluster formation. J. Am. Chem. Soc. 2004, 126, 5207–5212. [Google Scholar] [CrossRef] [PubMed]
- Temboury, M.R.C.; Paolucci, V.; Hooley, E.N.; Latterini, L.; Vosch, T. Probing DNA-stabilized fluorescent silver spectral heterogeneity by time-correlated single photon counting. Analyst 2016, 141, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Irudayaraj, J. Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor. Anal. Chem. 2011, 83, 2883–2889. [Google Scholar] [CrossRef] [PubMed]
- Le Guével, X.; Spies, C.; Daum, N.; Jung, G.; Schneider, M. Highly fluorescent silver nanoclusters stabilized by glutathione: A promising fluorescent label for bioimaging. Nano Res. 2012, 5, 379–387. [Google Scholar]
- Ke, C.Y.; Chen, T.H.; Lu, L.C.; Tseng, W.L. Understanding thiol-induced etching of luminescent gold nanoclusters. RSC Adv. 2014, 4, 26050–26056. [Google Scholar] [CrossRef]
- Li, P.; Liu, Y.; Wang, X.; Tang, B. A new FRET nanoprobe for trypsin using a bridged β-cyclodextrin dimer-dye complex and its biological imaging applications. Analyst 2011, 136, 4520–4525. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Liu, B. Conjugated polyelectrolyte based fluorescence turn-on assay for real-time monitoring of protease activity. Anal. Chem. 2010, 82, 8604–8610. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.Y.; Yang, Y.; Wang, G.Y.; Yao, Z.Y.; Zhang, L.; Wu, H.C. A simple fluorescent probe based on a pyrene derivative for rapid detection of protamine and monitoring of trypsin activity. Org. Biomol. Chem. 2015, 13, 8708–8712. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhang, B.; Luo, Z.T.; Yao, Q.F.; Leong, D.T.; Yan, N.; Xie, J.P. Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au 25 nanoclusters with atomic precision. Angew. Chem. Int. Ed. 2014, 53, 4623–4627. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Dong, S.J. Sensitive detection of cysteine based on fluorescent silver clusters. Biosens. Bioelectron. 2009, 24, 1569–1573. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Olieric, V.; Ma, P.; Panepucci, E.; Diederichs, K.; Wang, M.; Caffrey, M. In meso in situ serial X-ray crystallography of soluble and membrane proteins. Acta Crystallogr. 2015, D71, 1238–1256. [Google Scholar]
- Park, S.; Yang, H. Sensitive and selective trypsin detection using redox cycling in the presence of L-ascorbic acid. Analyst 2014, 139, 4051–4055. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.Z.; Zhang, P.; Zhang, S.Z.; Zhu, C.Q. Label-free and real-time monitoring of trypsin activity in living cells by quantum-dot-based fluorescent sensors. Anal. Methods UK 2014, 6, 2499–2505. [Google Scholar] [CrossRef]
Sample | Measured (μg/mL) | Trypsin Added (μg/mL) | Recovered (μg/mL) | Recovery (%) | RSD (%), n = 3 |
---|---|---|---|---|---|
1 | 0.19 | 0.75 | 0.85 | 88 | 8.5 |
2 | 0.22 | 0.75 | 0.92 | 94 | 10.4 |
3 | 0.23 | 0.75 | 0.86 | 85 | 7.9 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuo, C.-X.; Wang, L.-H.; Feng, J.-J.; Zhang, Y.-D. Label-Free Fluorescent Detection of Trypsin Activity Based on DNA-Stabilized Silver Nanocluster-Peptide Conjugates. Sensors 2016, 16, 1477. https://doi.org/10.3390/s16111477
Zhuo C-X, Wang L-H, Feng J-J, Zhang Y-D. Label-Free Fluorescent Detection of Trypsin Activity Based on DNA-Stabilized Silver Nanocluster-Peptide Conjugates. Sensors. 2016; 16(11):1477. https://doi.org/10.3390/s16111477
Chicago/Turabian StyleZhuo, Cai-Xia, Li-Hui Wang, Jing-Jing Feng, and Yao-Dong Zhang. 2016. "Label-Free Fluorescent Detection of Trypsin Activity Based on DNA-Stabilized Silver Nanocluster-Peptide Conjugates" Sensors 16, no. 11: 1477. https://doi.org/10.3390/s16111477
APA StyleZhuo, C. -X., Wang, L. -H., Feng, J. -J., & Zhang, Y. -D. (2016). Label-Free Fluorescent Detection of Trypsin Activity Based on DNA-Stabilized Silver Nanocluster-Peptide Conjugates. Sensors, 16(11), 1477. https://doi.org/10.3390/s16111477