A Robust, Enzyme-Free Glucose Sensor Based on Lysine-Assisted CuO Nanostructures
Abstract
:1. Introduction
2. Materials and Experimental Section
2.1. Chemicals
2.2. The Synthesis of Lysine-Assisted CuO Nanostructures Using a Rapid Hydrothermal Treatment Method
2.3. Characterization and Electrochemical Cell Assembly
2.4. Preparation of Modified Glassy Carbon Electrodes (GCEs)
3. Results and Discussion
3.1. The Structural and Morphological Characterization of CuO Nanostructures Obtained via Use of Lysine as a Soft Template
3.2. Electrochemically Sensing Glucose Using Different Electrochemical Modes
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Xu, L.; Sithambaram, S.; Zhang, Y. Novel urchin-like CuO synthesized by a facile reflux method with efficient olefin epoxidation catalytic performance. Chem. Mater. 2009, 21, 1253–1259. [Google Scholar] [CrossRef]
- Zhang, T.; Dong, W.; Keeter-Brewer, M.; Konar, S.; Njabon, R.N.; Tian, Z.R. Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites. J. Am. Chem. Soc. 2006, 128, 10960–10968. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, K.; Xu, D. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 2014, 60, 208–337. [Google Scholar] [CrossRef]
- Das, G.; Kalita, R.D.; Gogoi, P.; Buragohain, A.K.; Karak, N. Antibacterial activities of copper nanoparticle-decorated organically modified montmorillonite/epoxy nanocomposites. Appl. Clay Sci. 2014, 90, 18–26. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, J.; Zhang, S.; Wang, W.; Chen, Z. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles decorated carbon spheres. Sens. Actuators B Chem. 2015, 211, 385–391. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E. Copper oxide nanoflakes as highly sensitive and fast response self-sterilizing biosensors. J. Mater. Chem. 2011, 21, 12935–12940. [Google Scholar] [CrossRef]
- Akgul, G.; Akgul, F.A.; Mulazimoglu, E.; Unalan, H.E.; Turan, R. Fabrication and characterization of copper oxide-silicon nanowire heterojunction photodiodes. J. Phys. D Appl. Phys. 2014, 47, 0650106–0650113. [Google Scholar] [CrossRef]
- Morales, J.; Sanchez, L.; Martin, F.; Barrado, R.-J.; Sanchez, M. Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells. Thin Solid Films 2005, 474, 133–140. [Google Scholar] [CrossRef]
- Li, K.; Fan, G.; Yang, L.; Li, F. Novel ultrasensitive non-enzymatic glucose sensors based on controlled flower-like CuO hierarchical films. Sens. Actuators B Chem. 2014, 199, 175–182. [Google Scholar] [CrossRef]
- Zoolfakar, A.S.; Rani, R.A.; Morfa, A.J.; O’Mullane, A.P.; Zadeh, K.K. Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications. J. Mater. Chem. C 2014, 2, 5247–5270. [Google Scholar] [CrossRef]
- Liu, B.; Zeng, H.C. Mesoscale organization of CuO nanoribbons: Formation of “dandelions”. J. Am. Chem. Soc. 2004, 126, 8124–8125. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Wang, Y.; Meng, D.; Wu, X.; Wang, J.; Chen, J. Controllable fabrication of CuO nanostructure by hydrothermal method and its properties. Appl. Surf. Sci. 2014, 311, 602–608. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Huang, M.; Kuang, M. Facile synthesis of mesoporous CuO nanoribbons for electrochemical capacitors applications. Int. J. Electrochem. Sci. 2013, 8, 1366–1381. [Google Scholar]
- Keyson, D.; Volanti, D.; Cavalcante, L.; Simões, A.Z.; Varela, J.A.; Longo, E. CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method. Mater. Res. Bull. 2008, 43, 771–775. [Google Scholar] [CrossRef]
- Taguchi, M.; Ptitsyn, A.; McLamore, E.S.; Claussen, J.C. Nanomaterial-mediated biosensors for monitoring glucose. J. Diabetes Sci. Technol. 2014, 8, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Veiseh, O.; Tang, B.C.; Whitehead, K.A.; Anderson, D.G.; Langer, R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat. Rev. Drug Discov. 2015, 14, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Rakhi, R.B.; Sethupathi, K.; Ramaprabhu, S. A glucose biosensor based on deposition of glucose oxidase onto crystalline gold nanoparticle modified carbon nanotube electrode. J. Phys. Chem. B 2009, 113, 3190–3194. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Lu, F.; Tu, Y.; Ren, Z. Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 2004, 4, 191–195. [Google Scholar] [CrossRef]
- Halámková, L.; Halámek, J.; Bocharova, V.; Szczupak, A.; Alfonta, L.; Katz, E. Implanted biofuel cell operating in a living snail. J. Am. Chem. Soc. 2012, 134, 5040–5043. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, L.; Tong, S.; Li, X.; Song, W. Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination. Biosens. Bioelectron. 2009, 25, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Makaram, P.; Owens, D.; Aceros, J. Trends in nanomaterial-based non-invasive diabetes sensing technologies. Diagnostics 2014, 4, 27–46. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Zhang, F.; Baldwin, R.P. Comparison of metallic electrodes for constant-potential amperometric detection of carbohydrates, amino acids and related compounds in flow systems. Anal. Chim. Acta 1991, 244, 169–178. [Google Scholar] [CrossRef]
- Jiang, L.C.; Zhang, W.D. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens. Bioelectron. 2010, 25, 1402–1407. [Google Scholar] [CrossRef] [PubMed]
- Ibupoto, Z.H.; Nafady, A.; Soomro, R.A.; Sirajuddin; Sherazi, H.S.T.; Abro, M.I.; Willander, M. Glycine-assisted synthesis of NiO hollow cage-like nanostructures for sensitive non-enzymatic glucose sensing. RSC Adv. 2015, 5, 18773–18781. [Google Scholar] [CrossRef]
- Alizadeh, T.; Mirzagholipur, S. A Nafion-free non-enzymatic amperometric glucose sensor based on copper oxide nanoparticles-graphene nanocomposite. Sens. Actuators B 2014, 198, 438–447. [Google Scholar] [CrossRef]
- Ahmad, R.; Tripathy, N.; Hahn, Y.-B.; Umar, A.; Ibrahim, A.A.; Kim, S.H. A robust enzymeless glucose sensor based on CuO nanoseed modified electrodes. Dalton Trans. 2015, 44, 12488–12492. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, L.; Xing, R.; Song, J.; Song, H.; Liu, D.; Zhou, J. Electrospun three-dimensional porous CuO/TiO2 hierarchical nanocomposites electrode for nonenzymatic glucose biosensing. Electrochem. Commun. 2012, 20, 75–78. [Google Scholar] [CrossRef]
- Wang, X.; Hu, C.; Liu, H.; Du, G.; He, X.; Xi, Y. Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sens. Actuators B 2010, 144, 220–225. [Google Scholar] [CrossRef]
- Yan, Q.; Peng, B.; Su, G.; Cohan, B.E.; Major, T.C.; Meyerhoff, M.E. Measurement of tear glucose levels with amperometric glucose biosensor/capillary tube configuration. Anal. Chem. 2011, 83, 8341–8346. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-F. 3-D Nonporous Pt Electrode Prepared by a 2-D UPD Monolayer Process. Electroanalysis 2008, 20, 2229–2234. [Google Scholar] [CrossRef]
- Singh, B.; Laffir, F.; McCormac, T.; Dempsey, E. PtAu/C based bimetallic nanocomposites for non-enzymatic electrochemical glucose detection. Sens. Actuators B Chem. 2010, 150, 80–92. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Y.; Su, L.; Bellagamba, M.; Zhang, H.; Lei, Y. Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens. Bioelectron. 2010, 26, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; He, D.; Luo, S.; Cai, Q. An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sens. Actuators B Chem. 2009, 137, 134–138. [Google Scholar] [CrossRef]
- Balouch, Q.; Ibupoto, Z.H.; Khaskheli, G.Q.; Soomro, R.A.; Uddin, S.; Samoon, M.K.; Deewani, V.K. Cobalt Oxide Nanoflowers for Electrochemical Determination of Glucose. J. Electron. Mater. 2015, 44, 3724–3732. [Google Scholar] [CrossRef]
Types of Electrodes | LOD (μM) | Linear Range (mM) | Sensitivity (μA·μM−1·cm−1) | Reference |
---|---|---|---|---|
CuO nanorods/G | 4.0 | 4.0–8.0 | 371.43 | [28] |
3D Pt nanoporous | N.A | 0.1–1.5 | 642 | [30] |
Pt Au/C nanocomposite | 2 | 0–10 | 4.7 | [31] |
Co3O4 nanofibers | 0.97 | Up to 2.4 | 36.25 | [32] |
TiO2/CNT/Pt/GOx | 5.7 | 0.006–1.5 | 0.24 | [33] |
Co3O4/GCE-Nafion | 0.1 | 0.1–5.0 | 1618.71 | [34] |
CuO/GCE-Nafion | 0.0159 | 1–10 | 464,285.7 | This study |
Sample Number | Conc. of Glucose Added (mM) | Conc. of Glucose Recovered (mM) | Recovery (%) |
---|---|---|---|
1 | 3 | 3.1 | 93.1 |
2 | 5 | 4.99 | 100.2 |
3 | 7 | 7.1 | 98.59 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baloach, Q.-u.-A.; Tahira, A.; Mallah, A.B.; Abro, M.I.; Uddin, S.; Willander, M.; Ibupoto, Z.H. A Robust, Enzyme-Free Glucose Sensor Based on Lysine-Assisted CuO Nanostructures. Sensors 2016, 16, 1878. https://doi.org/10.3390/s16111878
Baloach Q-u-A, Tahira A, Mallah AB, Abro MI, Uddin S, Willander M, Ibupoto ZH. A Robust, Enzyme-Free Glucose Sensor Based on Lysine-Assisted CuO Nanostructures. Sensors. 2016; 16(11):1878. https://doi.org/10.3390/s16111878
Chicago/Turabian StyleBaloach, Qurrat-ul-Ain, Aneela Tahira, Arfana Begum Mallah, Muhammad Ishaq Abro, Siraj Uddin, Magnus Willander, and Zafar Hussain Ibupoto. 2016. "A Robust, Enzyme-Free Glucose Sensor Based on Lysine-Assisted CuO Nanostructures" Sensors 16, no. 11: 1878. https://doi.org/10.3390/s16111878
APA StyleBaloach, Q. -u. -A., Tahira, A., Mallah, A. B., Abro, M. I., Uddin, S., Willander, M., & Ibupoto, Z. H. (2016). A Robust, Enzyme-Free Glucose Sensor Based on Lysine-Assisted CuO Nanostructures. Sensors, 16(11), 1878. https://doi.org/10.3390/s16111878