A Smartphone Application for Personal Assessments of Body Composition and Phenotyping
Abstract
:1. Introduction
2. Methods and Materials
2.1. Digital Photography
2.2. Procedure
2.3. Development of Prediction Model for Body Fat
2.4. Statistical Methods
3. Results
3.1. Inter-Operator Variability in Digital Image Conditioning
3.2. Development and Validation of Prediction Model for Fat Mass
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Flegal, K.M.; Carroll, M.D.; Kit, B.K.; Ogden, C.L. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 2012, 307, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Yumuk, V.; Tsigos, C.; Fried, M.; Schindler, K.; Bussetto, L.; Misic, D.; Toplak, H. Obesity Management Task Force of the European Association for the Study of Obesity. European Guidelines for Obesity Management in Adults. Obes. Facts 2015, 8, 402–424. [Google Scholar] [CrossRef] [PubMed]
- Turk, M.W.; Elci, O.U.; Wang, J.; Sereika, S.M.; Ewing, L.J.; Acharya, S.D.; Glanz, K.; Burke, L.E. Self-monitoring as a mediator of weight loss in the SMART randomized clinical trial. Int. J. Behav. Med. 2013, 20, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. American College of Cardiology/American Heart Association Task Force on Practice Guidelines; Obesity Society. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J. Am. Coll. Cardiol. 2014, 63, 2985–3023. [Google Scholar] [PubMed]
- Leiter, L.A.; Astrup, A.; Andrews, R.C.; Cuevas, A.; Horn, D.B.; Kunešová, M.; Wittert, G.; Finer, N. Identification of educational needs in the management of overweight and obesity: Results of an international survey of attitudes and practice. Clin. Obes. 2015, 5, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Campos, C. Tips for communicating with overweight and obese patients. J. Fam. Pract. 2014, 63 (Suppl. S7), S11–S14. [Google Scholar] [PubMed]
- Linde, J.A.; Jeffrey, R.W.; Crow, S.J.; Brelje, K.L.; Pacanowski, C.R.; Gavin, K.L.; Smolenski, D.J. The Tracking Study: Description of a randomized controlled trial of variations on weight tracking frequency in a behavioral weight loss program. Contemp. Clin. Trials 2015, 40, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Klem, M.L.; Sereika, S.M.; Danford, C.A.; Ewing, L.J.; Burke, L.E. Self-weighing in weight management: A systematic literature review. Obesity 2015, 23, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Shieh, C.; Knisely, M.R.; Clark, D.; Carpenter, J.S. Self-weighing in weight management interventions: A systematic review of literature. Obes. Res. Clin. Pract. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukaski, H.C.; Siders, W.A. Regional impedance devices fail to accurately assess whole-body fatness. Nutrition 2013, 19, 851–857. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Gonzalez, M.C.; Shen, W.; Redman, L.; Thomas, D. Weight loss composition is one-fourth fat-free mass: A critical review and critique of this widely cited rule. Obes. Rev. 2014, 15, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Choi, A.; Kim, J.Y.; Jo, S.; Jee, J.H.; Heymsfield, S.B.; Bhagat, Y.A.; Kim, I.; Cho, J. Smartphone-based bioelectrical impedance analysis devices for daily obesity management. Sensors 2015, 15, 22151–22166. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, A.C.; Bartok, C.; Schoeller, D.A. The validity of bioelectrical impedance models in clinical populations. Nutr. Clin. Pract. 2004, 19, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Bosaeus, I.; de Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Manuel Gomez, J.; Lilienthal Heitmann, B.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis-part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C. Evolution of bioimpedance: Journey from assessment of physiological function through body fat to clinical medicine. Eur. J. Clin. Nutr. 2013, 67, S2–S9. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gallagher, D.; Thornton, J.C.; Yu, W.; Horlick, M.; Pi-Sunyer, F.X. Validation of a 3-dimensional photonic scanner for the measurement of body volumes, dimensions, and percentage body fat. Am. J. Clin. Nutr. 2006, 83, 809–816. [Google Scholar] [PubMed]
- Wells, J.C.; Ruto, A.; Treleaven, P. Whole body three-dimensional photonic scanning: A new technique for obesity research and clinical practice. Int. J. Obes. 2008, 32, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Garlie, T.N.; Obusek, J.P.; Corner, B.D.; Zambraski, E.J. Comparison of body fat estimates using 3D digital laser scans, direct manual anthropometry, and DXA in men. Am. J. Hum. Biol. 2010, 22, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Avila, J.I.; Ng, B.K.; Fan, B.; Loo, V.; Gilsanz, V.; Hangartner, T.; Kalkwarf, H.J.; Lappe, J.; Oberfield, S.; et al. Accurate body composition measures from whole-body silhouettes. Med. Phys. 2015, 42, 4668–4677. [Google Scholar] [CrossRef] [PubMed]
- Daanen, H.A.M.; TerHaar, F.B. 3D whole body scanners revisited. Displays 2013, 34, 270–275. [Google Scholar] [CrossRef]
- Kuk, J.L.; Lee, S.; Heymsfield, S.B.; Ross, R. Waist circumference and abdominal adipose tissue distribution: Influence of age and sex. Am. J. Clin. Nutr. 2005, 81, 1330–1334. [Google Scholar] [PubMed]
- Guo, S.S.; Chumlea, W.C.; Cockram, D.B. Use of statistical methods to estimate body composition. Am. J. Clin. Nutr. 1996, 64, 428S–435S. [Google Scholar] [PubMed]
- Sun, S.S.; Chumlea, W.C.; Heymsfield, S.B.; Lukaski, H.C.; Schoeller, D.; Friedl, K.; Kuczmarski, R.J.; Flegal, K.M.; Johnson, C.L.; Hubbard, V.S. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am. J. Clin. Nutr. 2003, 77, 331–340. [Google Scholar] [PubMed]
- Bland, J.M.; Altman, D.G. Statistical method for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Van Wormer, J.J.; Martinez, A.M.; Martinson, B.C.; Crain, A.L.; Benson, G.A.; Cosentino, D.L.; Pronk, N.P. Self-weighing promotes weight loss for obese adults. Am. J. Prev. Med. 2009, 36, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, D.M.; Bennett, G.G.; Askew, S.; Tate, D.F. Weighing every day matters: Daily weighing improves weight loss and adoption of weight control behaviors. J. Acad. Nutr. Diet. 2015, 115, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Bastien, M.; Pirier, P.; Lemieux, I.; Després, J.P. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog. Cardiovasc. Dis. 2014, 56, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Soileau, L.; Bautista, D.; Johnson, C.; Gao, C.; Zhang, K.; Li, X.; Heymsfield, S.B.; Thomas, D.; Zheng, J. Automated anthropometric phenotyping with novel Kinect-based three-dimensional imaging method: Comparison with a reference laser imaging system. Eur. J. Clin. Nutr. 2016, 70, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.C.K.; Cole, T.J.; Treleaven, P. Age-variability in body shape associated with excess weight: The UK National Sizing Survey. Obesity 2008, 16, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.C.; Cole, T.J.; Bruner, D.; Treleaven, P. Body shape in American and British adults: Between-country and inter-ethnic comparisons. Int. J. Obes. 2008, 32, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Daniell, N.; Olds, T.; Tomkinson, G. Volumetric differences in body shape among adults with differing body mass index values: An analysis using three-dimensional body scans. Am. J. Hum. Biol. 2014, 26, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.C.; Douros, I.; Fuller, N.J.; Elia, M.; Dekker, L. Assessment of body volume using three-dimensional photonic scanning. Ann. N. Y. Acad. Sci. 2000, 904, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Ng, B.K.; Hinton, B.J.; Fan, B.; Kanaya, A.M.; Shepherd, J.A. Clinical anthropometrics and body composition from 3D whole-body surface scans. Eur. J. Clin. Nutr. 2016. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Freeland-Graves, J.H.; Pepper, M.R.; Yao, M.; Xu, B. Predictive equations for central obesity via anthropometrics, stereovision imaging and MRI in adults. Obesity 2014, 22, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Freeland-Graves, J.H.; Pepper, M.R.; Stanforth, P.R.; Xu, B. Prediction of android and gynoid body adiposity via a three-dimensional stereovision body imaging system and dual-energy X-ray absorptiometry. J. Am. Coll. Nutr. 2015, 34, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Meunier, P.; Yin, S. Performance of a 2D image-based anthropometric measurement and clothing sizing system. Appl. Ergon. 2000, 31, 445–451. [Google Scholar] [CrossRef]
- Stewart, A.D.; Klein, S.; Young, J.; Simpson, S.; Lee, A.J.; Harrild, K.; Crockett, P.; Benson, P.J. Body image, shape, and volumetric assessments using 3D whole body laser scanning and 2D digital photography in females with a diagnosed eating disorder: Preliminary novel findings. Br. J. Psychol. 2012, 103, 183–202. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, S.S.; Whitehead, M.; Sheats, J.Q.; Mastromonico, J.; Hardy, D.; Smith, S.A. Smartphone Applications for Promoting Healthy Diet and Nutrition: A Literature Review. Jacobs J. Food Nutr. 2015, 2, 021. [Google Scholar] [PubMed]
- Pellegrini, C.A.; Pfammatter, A.F.; Conroy, D.E.; Spring, B. Smartphone applications to support weight loss: Current perspectives. Adv. Health Care Technol. 2015, 1, 13–22. [Google Scholar] [CrossRef] [PubMed]
Females | Males | |
---|---|---|
n | 63 | 54 |
Age, year | 38.7 ± 13.8 | 32.5 ± 9.8 |
(19 to 65) | (19 to 54) | |
Weight, kg | 70.9 ± 15.6 | 82.0 ± 13.2 |
(41.8 to 108.7) | (63.4 to 108.4) | |
Height, cm | 162.7 ± 6.1 | 178.0 ± 7.7 |
(152.0 to 174.9) | (163.0 to 194.5) | |
BMI a, kg/m2 | 26.8 ± 5.8 | 25.9 ± 4.2 |
(16.1 to 40.4) | (19.4 to 37.1) | |
Fat-free mass b, kg | 43.8 ± 12.6 | 62.8 ± 16.7 |
(31.9 to 62.8) | (47.4 to 80.3) | |
Fat mass b, kg | 27.2 ± 12.7 | 19.2 ± 10.0 |
(7.4 to 59.4) | (6.2 to 44.6) | |
Body fat, % | 36.6 ± 10.8 | 22.5 ± 8.9 |
(12.3 to 54.5) | (9.6 to 44.9) |
Females: FM = 18.545 − 0.312 HT + 0.653 WT + 4.522 LOWERABD_HT |
Males: FM = 56.602 + 0.799 PCTTOTAL − 0.063 SURFUP + 25.366 LOWERABD_HT |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farina, G.L.; Spataro, F.; De Lorenzo, A.; Lukaski, H. A Smartphone Application for Personal Assessments of Body Composition and Phenotyping. Sensors 2016, 16, 2163. https://doi.org/10.3390/s16122163
Farina GL, Spataro F, De Lorenzo A, Lukaski H. A Smartphone Application for Personal Assessments of Body Composition and Phenotyping. Sensors. 2016; 16(12):2163. https://doi.org/10.3390/s16122163
Chicago/Turabian StyleFarina, Gian Luca, Fabrizio Spataro, Antonino De Lorenzo, and Henry Lukaski. 2016. "A Smartphone Application for Personal Assessments of Body Composition and Phenotyping" Sensors 16, no. 12: 2163. https://doi.org/10.3390/s16122163
APA StyleFarina, G. L., Spataro, F., De Lorenzo, A., & Lukaski, H. (2016). A Smartphone Application for Personal Assessments of Body Composition and Phenotyping. Sensors, 16(12), 2163. https://doi.org/10.3390/s16122163