Visualization of Fluoride Ions In Vivo Using a Gadolinium(III)-Coumarin Complex-Based Fluorescence/MRI Dual-Modal Probe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Synthesis and Characterization of 4-(Diethylamino)-coumarin-3-carboxylic acid (CA)
2.3. Synthesis and Characterization of DO3A-Gd
2.4. Synthesis and Characterization of DO3A-Gd-CA
2.5. General Procedures of Spectroscopic Detection
2.6. Association Constant Calculation
2.7. MRI Experiment
3. Results
3.1. Synthesis and Photophysical Characterization of DO3A-Gd-CA in Solution
3.2. Spectroscopic Studies of DO3A-Gd-CA towards Fluoride Ion in Aqueous Medium
3.3. MRI Responses of DO3A-Gd-CA towards Anions in Aqueous Medium and In Vivo
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, H.; Wu, H.; Shen, H.; Geng, S.; Wang, B.; Wang, Y.; Ma, X.; Lid, G.; Tan, M. A bimodal MRI and NIR liposome nanoprobe for tumor targeted molecular imaging. J. Mater. Chem. B 2015, 3, 8832–8841. [Google Scholar] [CrossRef]
- Zheng, X.; Tang, H.; Xie, C.; Zhang, J.; Wu, W.; Jiang, X. Tracking cancer metastasis in vivo by using an iridium-based hypoxia-activated optical oxygen nanosensor. Angew. Chem. Int. Ed. 2015, 54, 8094–8099. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Han, Z.; Lu, Z.-R. A targeted nanoglobular contrast agent from host-guest self-assembly for MR cancer molecular imaging. Biomaterials 2016, 85, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Munge, B.S.; Coffey, A.L.; Doucette, J.M.; Somba, B.K.; Malhotra, R.; Patel, V.; Gutkind, J.S.; Rusling, J.F. Nanostructured immunosensor for attomolar detection of cancer biomarker interleukin-8 using massively labeled superparamagnetic particles. Angew. Chem. Int. Ed. 2011, 50, 7915–7918. [Google Scholar] [CrossRef] [PubMed]
- Pu, K.; Chattopadhyay, N.; Rao, J. Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging. J. Control. Release 2016, 240, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Li, S.; Yang, K.; Xu, B.; Ren, Q. Evaluation of a wobbling method applied to correcting defective pixels of CZT detectors in SPECT imaging. Sensors 2016, 16, 772. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-E.; Koo, H.; Sun, I.-C.; Ryu, J.H.; Kim, K.; Kwon, I.C. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem. Soc. Rev. 2012, 41, 2656–2672. [Google Scholar] [CrossRef] [PubMed]
- Weissleder, R.; Pittet, M.J. Imaging in the era of molecular oncology. Nature 2008, 452, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Pröhla, M.; Schuberta, U. S.; Weigand, W.; Gottschaldta, M. Metal complexes of curcumin and curcumin derivatives for molecular imaging and anticancer therapy. Coord. Chem. Rev. 2016, 307, 32–41. [Google Scholar] [CrossRef]
- Zhang, X.; Bi, A.; Gao, Q.; Zhang, S.; Huang, K.; Liu, Z.; Gao, T.; Zeng, W. Advances of molecular imaging for monitoring the anatomical and functional architecture of the olfactory system. ACS Chem. Neurosci. 2016, 7, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Glunde, K.; Artemov, D.; Penet, M.-F.; Jacobs, M.A.; Bhujwalla, Z.M. Magnetic resonance spectroscopy in metabolic and molecular imaging and diagnosis of cancer. Chem. Rev. 2010, 110, 3043–3059. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Liu, Q.; Pu, S.; Dong, Z.; Huang, C.; Li, F. Fluorophore-photochrome co-embedded polymer nanoparticles for photoswitchable fluorescence bioimaging. Nano Res. 2012, 5, 494–503. [Google Scholar] [CrossRef]
- Jennings, L.E.; Long, N.J. ‘Two is better than one’—Probes for dual-modality molecular imaging. Chem. Commun. 2009, 3511–3524. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Berezin, M.Y.; Zheng, J.; Akers, W.; Lin, F.; Teng, B.; Vasalatiy, O.; Gandjbakhche, A.; Griffiths, G.L.; Achilefu, S. Near infrared-fluorescent and magnetic resonance imaging molecular probe with high T1 relaxivity for in vivo multimodal imaging. Chem. Commun. 2010, 46, 3705–3707. [Google Scholar] [CrossRef] [PubMed]
- Quea, E.L.; Chang, C.J. Responsive magnetic resonance imaging contrast agents as chemical sensors for metals in biology and medicine. Chem. Soc. Rev. 2010, 39, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Berdichevski, A.; Yameen, H.S.; Dafni, H.; Neeman, M.; Seliktar, D. Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes. Proc. Natl. Acad. Sci. USA 2015, 112, 5147–5152. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.T.; Jia, H.M.; Succar, P.; Zhao, L.; Zhang, R.; Duan, C.Y.; Zhang, Z.Q. A highly selective and sensitive ON–OFF–ON fluorescen cechemosensor for cysteine detection in endoplasmic reticulum. Biosens. Bioelectron. 2015, 74, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Yang, Y. A concise colorimetric and fluorimetric probe for sarin related threats designed via the “Covalent-Assembly” approach. J. Am. Chem. Soc. 2014, 136, 6594–6597. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Dzubeck, V.; Latshaw, L.; Schneider, J.P. De novo designed peptidic redox potential probe: Linking sensitized emission to disulfide bond formation. J. Am. Chem. Soc. 2004, 126, 13616–13617. [Google Scholar] [CrossRef] [PubMed]
- Babailov, S.P. Thulium diketonate as NMR paramagnetic probe for moderately fast molecular dynamics and supersensitive reagent for in situ control of temperature. Sens. Actuators B 2016, 233, 476–478. [Google Scholar] [CrossRef]
- Louie, A. Multimodality Imaging Probes: Design and Challenges. Chem. Rev. 2010, 110, 3146–3195. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Longmire, M.R.; Ogawa, M.; Choyke, P.L. Rational chemical design of the next generation of molecular imaging probes based on physics and biology: Mixing modalities, colors and signals. Chem. Soc. Rev. 2011, 40, 4626–4648. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Song, R.F.; Guo, K.; Meng, Q.T.; Zhang, R.; Kong, X.; Zhang, Z.Q. A gadolinium(III) complex based dual-modal probefor MRI and fluorescence sensing of fluoride ions in aqueous medium and in vivo. Dalton Trans. 2016, 45, 17616–17623. [Google Scholar] [CrossRef] [PubMed]
- Ngo, H.T.; Liu, X.; Jolliffe, K.A. Anion recognition and sensing with Zn(II)–dipicolylamine complexes. Chem. Soc. Rev. 2012, 41, 4928–4965. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.S.; Paul, K.; Luxami, V. Ratiometric fluorescent chemosensor for fluoride ion based on inhibition of excited state intramolecular proton transfer. Spectrochim. Aata A 2015, 138, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Pillai, A.B.; Varghese, B.; Madhusoodanan, K.N. Design and Development of Novel Sensors for the Determination of Fluoride in Water. Environ. Sci. Technol. 2012, 46, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.X.; Wang, Y.; Meng, Q.T.; Jia, H.M.; Wang, Y.F.; Kong, X.F.; Duan, C.Y.; Zhang, Z.Q. A Coumarin–based Colorimetric and Fluorescent Chemosensor for the “Naked–eye” Detection of Fluoride ion in 100% Natural Water Medium Using Coated Chromatography Plates. ChemistrySelect 2016, 1, 4397–4402. [Google Scholar] [CrossRef]
- Liu, X.; Xu, J.; Lv, Y.; Wu, W.; Liu, W.; Tang, Y. An ATP-selective, lanthanide complex luminescent probe. Dalton Trans. 2013, 42, 9840–9846. [Google Scholar] [CrossRef] [PubMed]
- Mizukami, S.; Tonai, K.; Kaneko, M.; Kikuchi, K. Lanthanide-Based Protease Activity Sensors for Time-Resolved Fluorescence Measurements. J. Am. Chem. Soc. 2008, 130, 14376–14377. [Google Scholar] [CrossRef] [PubMed]
- Efimov, N.N.; Koroteev, P.S.; Gavrikov, A.V.; Ilyukhin, A.B.; Dobrokhotova, Z.V.; Novotortsev, V.M. Magnetic Behavior of Carboxylate and β-Diketonate Lanthanide Complexes Containing Stable Organometallic Moieties in the Core-Forming Ligand. Magnetochemistry 2016, 2, 38. [Google Scholar] [CrossRef]
- Vaněk, J.; Lubal, P.; Ševčíková, R.; Polášek, M.; Hermann, P. Mono(pyridine-N-oxide) analog of DOTA as a suitable organic reagent for a sensitive and selective fluorimetric determination of Ln(III) ions. J. Lumin. 2012, 132, 2030–2035. [Google Scholar] [CrossRef]
- Tripier, R.; Platas-Iglesias, C.; Boos, A.; Morfin, J.-F.; Charbonnière, L. Towards Fluoride Sensing with Positively Charged Lanthanide Complexes. Eur. J. Inorg. Chem. 2010, 2735–2745. [Google Scholar] [CrossRef]
- Li, W.; Fraser, E.; Meade, T.J. A Calcium-Sensitive Magnetic Resonance Imaging Contrast Agent. J. Am. Chem. Soc. 1999, 121, 1413–1414. [Google Scholar] [CrossRef]
- Major, J.L.; Boiteau, R.M.; Meade, T.J. Mechanisms of ZnII-Activated Magnetic Resonance Imaging Agents. Inorg. Chem. 2008, 47, 10788–10795. [Google Scholar] [CrossRef] [PubMed]
- Louie, Y.; Huber, M.M.; Ahrens, E.T.; Rothbacher, U.; Moats, R.; Jacobs, R.E.; Fraser, S.E.; Meade, T.J. In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol. 2000, 18, 321–325. [Google Scholar] [PubMed]
- Gunnlaugsson, T.; Harte, A.J.; Leonard, J.P.; Nieuwenhuyzen, M. Delayed lanthanide luminescence sensing of aromatic carboxylates using heptadentate triamide Tb(III) cyclen complexes: The recognition of salicylic acid in water. Chem. Commun. 2002, 18, 2134–2135. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, C.-W.; He, S.-M.; Ren, N.; Zhang, J.-J. Five novel lanthanide complexes with 2-chloroquinoline-4-carboxylic acid and 1,10-phenanthroline: Crystal structures, molecular spectra, thermal properties. J. Mol. Struct. 2016, 1125, 383–390. [Google Scholar] [CrossRef]
- Girginova, P.I.; Pereira, L.C.J.; Coutinho, J.T.; Santos, I.C.; Almeida, M. Slow magnetic relaxation in lanthanide ladder type coordination polymers. Dalton Trans. 2014, 43, 1897–1903. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Fan, Y.; Song, T.; Xu, J.; Wang, J.; Chai, J.; Liu, Y.; Wang, L.; Zhang, L. In situ synthesis of a series of lanthanide coordination polymers based on N-heterocyclic carboxylate ligands: Crystal structure and luminescence. Inorg. Chim. Acta 2015, 438, 128–134. [Google Scholar] [CrossRef]
- Gai, Y.-L.; Xiong, K.-C.; Chen, L.; Bu, Y.; Li, X.-J.; Jiang, F.-L.; Hong, M.-C. Visible and NIR Photoluminescence Properties of a Series of Novel Lanthanide–Organic Coordination Polymers Based on Hydroxyquinoline–Carboxylate Ligands. Inorg. Chem. 2012, 51, 13128–13137. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.-L.; Yen, Y.-F.; Sung, H.H.-Y.; Siu, A.W.-H.; Jayarathne, S.T.; Wong, K.S.; Williams, I.D. Quantifying enhanced photoluminescence in mixed-lanthanide carboxylate polymers: Sensitizationversusreduction of self-quenching. J. Mater. Chem. 2011, 21, 8547–8549. [Google Scholar] [CrossRef]
- Plush, S.E.; Gunnlaugsson, T. Luminescent Sensing of Dicarboxylates in Water by a Bismacrocyclic Dinuclear Eu(III) Conjugate. Org. Lett. 2007, 9, 1919–1922. [Google Scholar] [CrossRef] [PubMed]
- Lo, L.-C.; Liao, Y.-C.; Kuo, C.-H.; Chen, C.-T. A Novel Coumarin-Type Derivatizing Reagent of Alcohols: Application in the CD Exciton Chirality Method for Microscale Structural Determination. Org. Lett. 2000, 2, 683–685. [Google Scholar] [CrossRef] [PubMed]
- Nithyakumar, A.; Alexander, V. Synthesis, relaxivity, and in vitro fluorescence imaging studies of a novel d–f heterometallic trinuclear complex as a potential bimodal imaging probe for MRI and optical imaging. Dalton Trans. 2015, 44, 17800–17809. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, S.; Carrié, M.-C.; Pope, S.J.A.; Squire, J.; Beeby, A.; Sammes, P.G. Pyrene-sensitised near-IR luminescence from ytterbium and neodymium complexes. Dalton Trans. 2004, 15, 1405–1409. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.T.; Shi, Y.; Wang, C.P.; Jia, H.M.; Gao, X.; Zhang, R.; Wang, Y.F.; Zhang, Z.Q. NBD-based fluorescent chemosensor for theselective quantification of copper and sulfide inan aqueous solution and living cells. Org. Biomol. Chem. 2015, 13, 2918–2926. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, N.; Sugita, M.; Wernsdorfer, W. Quantum Tunneling of Magnetization in Lanthanide Single-Molecule Magnets: Bis(phthalocyaninato)terbium and Bis(phthalocyaninato)dysprosium Anions. Angew. Chem. Int. Ed. 2005, 44, 2931–2935. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Wang, R.; Wei, L.; Cheng, L.; Li, Z.; Xi, Z.; Yi, L. o-Fluorination of Aromatic Azides Yields Improved Azido-Based Fluorescent Probes for Hydrogen Sulfide: Synthesis, Spectra, and Bioimaging. Chem. Asian J. 2014, 9, 3586–3592. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.G.; Cha, S.; Lee, H.; Jeon, H.L.; Chang, S.-K. Sulfide-selective chemosignaling by a Cu2+ complex of dipicolylamine appended fluorescein. Chem. Comm. 2009, 47, 7390–7392. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Chen, W.; Liu, C.; Rosser, E.W.; Pacheco, A.; Zhao, Y.; Aguilar, H.C.; Xian, M. Fluorescent Probes Based on Nucleophilic Substitution-Cyclization for Hydrogen Sulfide Detection and Bioimaging. Chem. Eur. J. 2014, 20, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.T.; Jia, H.M.; Gao, X.; Wang, Y.; Zhang, R.; Wang, R.J.; Zhang, Z.Q. Reversible and Selective Fluorescence Detection of HistidineUsing a Naphthalimide-Based Chemosensing Ensemble. Chem. Asian J. 2015, 10, 2411–2418. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, O.A.; Routledge, J.D.; Jennings, L.B.; Rees, N.H.; Kenwright, A.M.; Beer, P.D.; Faulkner, S. Substituent effects on fluoride binding by lanthanide complexes of DOTA-tetraamides. Dalton Trans. 2016, 45, 3070–3077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Wu, J.; Zhuang, X.; Zhang, W.; Liu, W.; Wang, P.; Wu, S. A highly selective fluorescent sensor for fluoride in aqueous solution based on the inhibition of excited-state intramolecular proton transfer. Sens. Actuators B 2010, 146, 260–265. [Google Scholar] [CrossRef]
- Mizukami, S.; Nagano, T.; Urano, Y.; Odani, A.; Kikuchi, K. A fluorescent anion sensor that works in neutral aqueous solution for bioanalytical application. J. Am. Chem. Soc. 2002, 124, 3920–3925. [Google Scholar] [CrossRef] [PubMed]
- Koteeswari, R.; Ashokkumar, P.; Malar, E.J.P.; Ramakrishnan, V.T.; Ramamurthy, P. Highly selective, sensitive and quantitative detection of Hg2+ in aqueous medium under broad pH range. Chem. Commun. 2011, 47, 7695–7697. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; New, E.J. Promising strategies for Gd-based responsive magnetic resonance imaging contrast agents. Curr. Opin. Chem. Biol. 2013, 17, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Xie, N.; Feng, K.; Chen, B.; Zhao, M.; Peng, S.; Zhang, L.-P.; Tung, C.-H.; Wu, L.-Z. Water-soluble copolymeric materials: Switchable NIR two-photon fluorescence imaging agents for living cancer cells. J. Mater. Chem. B 2014, 2, 502–510. [Google Scholar] [CrossRef]
- Shibu, E.S.; Sugino, S.; Ono, K.; Saito, H.; Nishioka, A.; Yamamura, S.; Sawada, M.; Nosaka, Y.; Biju, V. Singlet-oxygen-sensitizing near-infrared-fluorescent multimodal nanoparticles. Angew. Chem. Int. Ed. 2013, 52, 10559–10563. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Song, R.; Feng, H.; Guo, K.; Meng, Q.; Chi, H.; Zhang, R.; Zhang, Z. Visualization of Fluoride Ions In Vivo Using a Gadolinium(III)-Coumarin Complex-Based Fluorescence/MRI Dual-Modal Probe. Sensors 2016, 16, 2165. https://doi.org/10.3390/s16122165
Wang Y, Song R, Feng H, Guo K, Meng Q, Chi H, Zhang R, Zhang Z. Visualization of Fluoride Ions In Vivo Using a Gadolinium(III)-Coumarin Complex-Based Fluorescence/MRI Dual-Modal Probe. Sensors. 2016; 16(12):2165. https://doi.org/10.3390/s16122165
Chicago/Turabian StyleWang, Yue, Renfeng Song, Huan Feng, Ke Guo, Qingtao Meng, Haijun Chi, Run Zhang, and Zhiqiang Zhang. 2016. "Visualization of Fluoride Ions In Vivo Using a Gadolinium(III)-Coumarin Complex-Based Fluorescence/MRI Dual-Modal Probe" Sensors 16, no. 12: 2165. https://doi.org/10.3390/s16122165
APA StyleWang, Y., Song, R., Feng, H., Guo, K., Meng, Q., Chi, H., Zhang, R., & Zhang, Z. (2016). Visualization of Fluoride Ions In Vivo Using a Gadolinium(III)-Coumarin Complex-Based Fluorescence/MRI Dual-Modal Probe. Sensors, 16(12), 2165. https://doi.org/10.3390/s16122165