A Personal, Distributed Exposimeter: Procedure for Design, Calibration, Validation, and Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Textile Antennas
2.2. Receiver Nodes for Power Detection
2.3. On-Body Setup
2.4. Design Procedure
Urban Macro-Cell | Indoor Pico-Cell | Outdoor-Indoor | |
---|---|---|---|
Polar Angle [26] | |||
Asymmetric Double exponential distribution | |||
Peak polar angle: (°) | 87.8 | 88.0 | 90.2 |
Spread parameter | 3.9 | 6.9 | 5.4 |
Spread parameter | 17.8 | 9.4 | 5.5 |
Polarization (26] | |||
Gaussian distribution | |||
Cross Polarization Ratio (dB) | 7.3 | 7.0 | 10.7 |
Nr of Paths (Npw) [27] | |||
Gao distribution | |||
Maximum number of paths: NT | 22 | 16 | 21 |
Distribution parameter: | 2.7 | 4.7 | 4.5 |
Magnitude E field, Shadowing [28] | |||
Lognormal distribution | |||
Standard deviation | 6 | 6 | 12 |
2.5. Design of a PDE Using Numerical Simulations
2.6. Design of the PDE Using Calibration Measurements
2.7. Calibration of the PDE
2.8. Validation Measurements in a Real Environment
2.9. Proof-of-Concept: RF Exposure Measurements in a Real Environment
3. Results
3.1. Design Using Numerical Simulations
3.2. Calibration Measurements of the PDE in an Anechoic Chamber
Quantities | Urban Macro-Cell | Indoor Pico-Cell | Outdoor-Indoor |
---|---|---|---|
Selected positionspolarizations | BH,DV,GH,IV | ||
Averaging | geometric | ||
Qi,2 / (cm²) | |||
PI50 of AAgeom/ Sinc (dB) | |||
Detection limit (W/m²) |
3.3. Validation Measurements in a Real Environment
3.4. Proof-of-Concept: RF Exposure Measurements in a Real Environment
Room | Mean ( | Std ( | p25 ( | p50 ( | p75 ( |
---|---|---|---|---|---|
Garden | 2.5 | 0.86 | 1.9 | 2.2 | 2.8 |
Living Room | 6.5 | 2.5 | 4.8 | 6.0 | 7.6 |
Kitchen + Toilet | 2.1 | 0.50 | 1.8 | 2.0 | 2.4 |
Stairs | 14 | 13 | 4.5 | 11 | 17 |
Bedroom 1 | 22 | 5.5 | 18 | 20 | 25 |
Bathroom | 22 | 5.0 | 19 | 23 | 25 |
Bedroom 2 | 30 | 18 | 20 | 24 | 32 |
Bedroom 3 | 18 | 4.4 | 15 | 18 | 21 |
Platform | 43 | 9.1 | 36 | 43 | 48 |
Total | 18 | 15 | 4.1 | 17 | 24 |
4. Discussion
4.1. Calibration and Design of the PDE
4.2. Comparison with Literature
4.3. Comparison of both Approaches for the Design of the PDE
- Reproducibility—The placement of the textile antennas on the body is exact and perfectly reproducible. In a calibration in an anechoic chamber, there are inevitable deviations in the on-body placement of the antennas, whereas in numerical simulations there are no deviations between different antennas or receiver electronics. The subject is always in the same pose, whereas a real subject cannot stay perfectly stationary during calibration measurements.
- Three-Dimensional Gain—The three-dimensional directive gain of the on-body antennas can be assessed with very small resolution using numerical simulations. The effect of polar angle on the incident plane waves can thus be included. Measurements in the anechoic chamber only provide an antenna aperture in the azimuthal plane and cannot perfectly include the effect of polar angle of the incident plane waves.
- Phase Information—The numerical simulations allow one to control all the aspects of the electromagnetic fields and thus also the phase. This allows one to determine the antenna apertures for a constant phase, which is important if the multipath antenna aperture is studies, see Equation (4). In contrast, one is only able to register polarization and amplitude information with the proposed measurement procedure.
- Adaptability of the Antennas—The antennas can be adapted and tuned so that they function optimally when used-on body, whereas this approach would be very time and material consuming in reality.
- Real Setup—Both the antennas and the subject are the actual subject and antennas used for the measurements, while the phantom and the antennas used in the numerical simulations are mere models for reality. Deviations from the optimal set up such as small displacement or rotations of the antennas are automatically taken into account during the calibration, whereas these can never be modeled exactly using FDTD. Moreover, the measurements are also not faced with uncertainties on the FDTD simulations [33], although there are uncertainties on the calibration as well [34].
- Adaptability to other Subjects—Once the antennas are designed and a certain set of antenna positions is chosen on-the body, multiple subjects can be calibrated relatively fast. Whereas using numerical simulations either a phantom of the other subjects should be made using MRI and a labor-intensive process of converting the MRI images to a usable phantom or multiple existing phantoms, for example the virtual family [29], have to be fully simulated with the antennas placed on the body, in order to only approximate the real antenna aperture.
4.4. Validation Measurements
4.5. Measurements in Ghent
4.6. Properties of an Adequate PDE
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
PDE | Personal, Distributed Exposimeter |
GSM | Global System for Mobile Communication |
DL | Downlink |
RF | Radio Frequency |
EM | Electromagnetic |
PEM | Personal Exposimeter |
SMA | Sub-Miniature version A |
AA | Antenna Aperture |
EMF | Electromagnetic Field |
FDTD | Finite-Difference Time-Domain |
VFM | Virtual Family Male |
TX | Transmitting Antenna |
References
- Ahlbom, A.; Bergqvist, U.; Bernhardt, J.H.; Cesarini, J.; Court, L.A.; Grandolfo, M.; Hietanen, M.; Mckinlay, A.F.; Repacholi, M.H.; Sliney, D.H.; et al. International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 1998, 74, 494–522. [Google Scholar]
- Röösli, M.; Frei, P.; Mohler, E.; Braun-Fahrländer, C.; Bürgi, A.; Fröhlich, J.; Neubauer, G.; Theis, G.; Egger, M. Statistical analysis of personal radiofrequency electromagnetic field measurements with nondetects. Bioelectromagnetics 2008, 29, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Bolte, J.F.B.; Van der Zande, G.; Kamer, J. Calibration and uncertainties in personal exposure measurements of radiofrequency electromagnetic fields. Bioelectromagnetics 2011, 32, 652–663. [Google Scholar] [CrossRef] [PubMed]
- Bolte, J.F.B.; Eikelboom, T. Personal radiofrequency electromagnetic field measurements in the Netherlands: Exposure level and variability for everyday activities, times of day and types of area. Environ. Int. 2012, 48, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, G.; Cecil, S.; Giczi, W.; Petric, B.; Preiner, P.; Fröhlich, J.; Röösli, M. The association between exposure determined by radiofrequency personal exposimeters and human exposure: A simulation study. Bioelectromagnetics 2010, 31, 535–545. [Google Scholar] [CrossRef]
- Thielens, A.; De Clercq, H.; Agneessens, S.; Lecoutere, J.; Verloock, L.; Declercq, F.; Vermeeren, G.; Tanghe, E.; Rogier, H.; Puers, R. Personal Distributed Exposimeter for Radio Frequency Exposure Assessment in Real Environments. Bioelectromagnetics 2013, 34, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Gryz, K.; Zradziński, P.; Karpowicz, J. The Role of the Location of Personal Exposimeters on the Human Body in Their Use for Assessing Exposure to the Electromagnetic Field in the Radiofrequency Range 98–2450 MHz and Compliance Analysis: Evaluation by Virtual Measurements. BioMed Res. Int. 2015. [Google Scholar] [CrossRef] [PubMed]
- De Miguel-Bilbao, S.; García, J.; Ramos, V.; Blas, J. Assessment of human body influence in exposure measurements of electric field in indoor enclosures. Bioelectromagnetics 2015, 36, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Martens, A.L.; Bolte, J.F.B.; Beekhuizen, J.; Kromhout, H.; Smid, T.; Vermeulen, R. Validity of at home model predictions as a proxy for personal exposure to radiofrequency electromagnetic fields from mobile phone base stations. Environ. Res. 2015, 142, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Gajšek, P.; Ravazzani, P.; Wiart, J.; Grellier, J.; Samaras, T.; Thuróczy, G. Electromagnetic field exposure assessment in Europe radiofrequency fields (10 MHz–6 GHz). J. Expo. Sci. Environ. Epidemiol. 2015, 25, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Blaz, V.; Kos, B.; Gajsek, P. Typical exposure of children to EMF: Exposimetry and dosimetry. Radiat. Protect. Dosim. 2015, 163, 70–80. [Google Scholar]
- Markakis, I.; Samaras, T. Radiofrequency Exposure in Greek Indoor Environments. Heal. Phys. 2013, 104, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Estenberg, J.; Augustsson, T. Extensive Frequency Selective Measurements of Radiofrequency Fields in Outdoor Environments Performed with a Novel Mobile Monitoring System. Bioelectromagnetics 2014, 35, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Thielens, A.; Agneessens, S.; Verloock, L.; Tanghe, E.; Rogier, H.; Martens, L.; Joseph, W. On-body Calibration and Processing for a Combination of Two Radio Frequency Personal Exposimeters. Radiat. Protect. Dosim. 2015, 163, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Thielens, A.; Agneessens, S.; De Clercq, H.; Lecoutere, J.; Verloock, L.; Tanghe, E.; Aerts, S.; Puers, R.; Rogier, H.; Martens, L. On-body Calibration and Measurements using a Personal, Distributed Exposimeter for Wireless Fidelity. Heal. Phys. 2015, 108, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Thielens, A.; Vanveerdeghem, P.; Agneessens, S.; Vermeeren, G.; Rogier, H.; Martens, L.; Joseph, W. Whole-Body Averaged Specific Absorption Rate Estimation using a Personal, Distributed Exposimeter. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1534–1537. [Google Scholar] [CrossRef]
- Blas, J.; Lago, F.A.; Fernandez, P.; Lorenzo, R.M.; Abril, E.J. Potential exposure assessment errors associated with body-worn RF dosimeters. Bioelectromagnetics 2007, 28, 573–576. [Google Scholar] [CrossRef] [PubMed]
- Bahillo, A.; Blas, J.; Fernández, P.; Lorenzo, R.M.; Mazuelas, S.; Abril, E.J. E-Field Assessment Errors Associated with RF Dosemeters for Different Angles of Arrival. Radiat. Prot. Dosim. 2008, 132, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Iskra, S.; McKenzie, R.; Cosic, I. Factors Influencing Uncertainty in Measurement of Electric Fields Close to the Body in Personal RF Dosimetry. Radiat. Protect. Dosim. 2010, 140, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Iskra, S.; McKenzie, R.; Cosic, I. Monte Carlo simulations of the electric field close to the body in realistic environments for application in personal radiofrequency dosimetry. Radiat. Protect. Dosim. 2011, 147, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Vanveerdeghem, P.; Van Torre, P.; Thielens, A.; Knockaert, J.; Joseph, W.; Rogier, H. Compact Personal Distributed Wearable Exposimeter. IEEE Sens. J. 2015, 15, 4393–4401. [Google Scholar] [CrossRef] [Green Version]
- Declerq, F.; Georgadis, A.; Rogier, H. Wearable aperturecoupled shorted solar patch antenna for remote tracking and monitoring applications. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, Italy, 11–15 April 2011.
- Balanis, C.A. Antenna Theory: Analysis and Design; Wiley: Collin County, TX, USA, 1982. [Google Scholar]
- Vermeeren, G.; Joseph, W.; Olivier, C.; Martens, L. Statistical multipath exposure of a human in a realistic electromagnetic environment. Heal. Phys. 2008, 94, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Thielens, A.; Vermeeren, G.; Joseph, W.; Martens, L. Stochastic Method for the Determination of the Organ-specific Averages SAR in Realistic Environments at 950 MHz. Bioelectromagnetics 2013, 34, 549–562. [Google Scholar] [PubMed]
- Kalliola, K.; Sulonen, K.; Laitinen, H.; Kivekäs, O.; Krogerus, J.; Vainikainen, P. Angular power distribution and mean effective Gain of mobile antenna in different propagation environments. IEEE Trans. Veh. Technol. 2002, 51, 823–838. [Google Scholar] [CrossRef]
- Zhao, X.; Kivinen, J.; Vainikainen, P.; Skog, K. Propagation Characteristics for Wideband Outdoor at 5.3 GHz. IEEE J. Sel. Areas Commun. 2002, 20, 507–514. [Google Scholar] [CrossRef]
- Asplund, H.; Glazunov, A.A.; Molisch, A.F.; Pedersen, K.I.; Steinbauer, M. The COST 259 Directional Channel Model-Part II: Macrocells. IEEE Trans. Wirel. Commun. 2006, 5, 3434–3450. [Google Scholar] [CrossRef]
- Christ, A.; Kainz, W.; Hahn, E.G.; Honegger, K.; Zefferer, M.; Neufeld, E.; Rascher, W.; Janka, R.; Bautz, W.; Chen, J. The Virtual Family–development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys. Med. Boil. 2010, 55. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, C.; Gabriel, S.; Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Boil. 1996, 41, 2231–2249. [Google Scholar] [CrossRef]
- Glazunov, A.A.; Molish, A.F.; Tufvesson, F. Mean effective Gain of Antennas in a Wireless Channel. IET Microwaves Antennas Propag. 2009, 3, 214–227. [Google Scholar] [CrossRef]
- Lecoutere, J.; Thielens, A.; Agneessens, S.; Rogier, H.; Joseph, W.; Puers, R. Wireless Fidelity Electromagnetic Field Exposure Monitoring With Wearable Body Sensor Networks. IEEE Trans. Biomed. Circuits Syst. 2015. [Google Scholar] [CrossRef]
- Bakker, J.F.; Paulides, M.M.; Christ, A.; Kuster, N.; Van Rhoon, G.C. Assessment of induced SAR in children exposed to electromagnetic plane waves between 10 MHz and 5.6 GHz. Phys. Med. Biol. 2010, 55, 3115–3130. [Google Scholar] [CrossRef] [PubMed]
- European Committee for Eletrotechnical Standardisation. EN 50492. Basic Standard for the in-situ Measurement of Electromagnetic Field Strength Related to Human Exposure in the Vicinity of Base Stations; BSI: Brussels, Belgium, 2009. [Google Scholar]
- Saunders, S.R. Antennas and Propagation for Wireless Communication Systems; John Wiley & Sons, Inc.: New York, NY, USA, 1999. [Google Scholar]
- Bamba, A.; Joseph, W.; Vermeeren, G.; Tanghe, E.; Gaillot, D.P.; Andersen, J.B.; Nielsen, J.Ø.; Lienard, M.; Martens, L. Validation of experimental whole-body SAR assessment method in a complex indoor environment. Bioelectromagnetics 2012, 34, 122–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, W.; Aerts, S.; Vandenbossche, M.; Thielens, A.; Martens, L. Drone Based Measurement System for Radio Frequency Exposure Assessment. Bioelectromagentics 2015. submitted. [Google Scholar]
- Joseph, W.; Frei, P.; Roösli, M.; Thuróczy, G.; Gajsek, P.; Trcek, T.; Bolte, J.; Vermeeren, G.; Mohler, E.; Juhasz, P.; et al. Comparison of personal radio frequency electromagnetic field exposure in different urban areas across Europe. Environ. Res. 2010, 110, 658–663. [Google Scholar] [CrossRef]
- Council. Exposure Science in the 21st Century: A Vision and a Strategy; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Dierck, A.; De Keulenaer, T.; Declercq, F.; Rogier, H. A wearable active GPS antenna for application in smart textiles. In Proceedings of the 32nd ESA Antenna workshop on Antennas for Space Applications, Noordwijk, The Netherlands, 5–8 October 2010.
- Scarpello, M.L.; Kazani, I.; Hertleer, C.; Rogier, H.; Vande Ginste, D. Stability and efficiency of screen-printed wearable and washable antennas. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 838–841. [Google Scholar] [CrossRef]
- Mohler, E.; Frei, P.; Frölich, J.; Braun-Fahrländer, C.; Röösli, M. Exposure to Radiofrequency Electromagnetic Fields and Sleep Quality: A Prospective Cohort Study. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viel, J.F.; Tiv, M.; Moissonnier, M.; Cardis, E.; Hours, M. Variability of radiofrequency exposure across days of the week: A population-based study. Environ. Res. 2011, 111, 510–513. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thielens, A.; Vanveerdeghem, P.; Van Torre, P.; Gängler, S.; Röösli, M.; Rogier, H.; Martens, L.; Joseph, W. A Personal, Distributed Exposimeter: Procedure for Design, Calibration, Validation, and Application. Sensors 2016, 16, 180. https://doi.org/10.3390/s16020180
Thielens A, Vanveerdeghem P, Van Torre P, Gängler S, Röösli M, Rogier H, Martens L, Joseph W. A Personal, Distributed Exposimeter: Procedure for Design, Calibration, Validation, and Application. Sensors. 2016; 16(2):180. https://doi.org/10.3390/s16020180
Chicago/Turabian StyleThielens, Arno, Peter Vanveerdeghem, Patrick Van Torre, Stephanie Gängler, Martin Röösli, Hendrik Rogier, Luc Martens, and Wout Joseph. 2016. "A Personal, Distributed Exposimeter: Procedure for Design, Calibration, Validation, and Application" Sensors 16, no. 2: 180. https://doi.org/10.3390/s16020180
APA StyleThielens, A., Vanveerdeghem, P., Van Torre, P., Gängler, S., Röösli, M., Rogier, H., Martens, L., & Joseph, W. (2016). A Personal, Distributed Exposimeter: Procedure for Design, Calibration, Validation, and Application. Sensors, 16(2), 180. https://doi.org/10.3390/s16020180