Lightweight CoAP-Based Bootstrapping Service for the Internet of Things
Abstract
:1. Introduction
2. State of the Art
2.1. Authentication, Authorization and Accounting (AAA) Framework
2.2. The Extensible Authentication Protocol (EAP)
2.3. The Constrained Application Protocol: CoAP
2.4. General Concept of Bootstrapping
2.5. Bootstrapping in IoT
3. The Bootstrapping Service: CoAP-EAP
- Constrained and low-overhead. CoAP is designed for communications among smart objects in constrained networks. Moreover, we assume that the smart object already ships a CoAP implementation to support other services in IoT networks, so we can re-use the source code for the bootstrapping service.
- Interoperability. The solution is based on three well-known standards, which promotes interoperability and easy deployment. The influence that CoAP has on constrained devices and their use in IoT environments as an application protocol for smart object management benefits interoperability.
- Security and well-known key distribution and management. The use of EAP and its associated key management process and the guidelines for AAA key management defined in [13] provides a mature framework for key management.
- Flexibility. The use of EAP and AAA provides flexibility in the authentication and authorization processes, so they can be easily adapted to the needs of IoT networks.
- Scalability and large scale deployment. AAA framework is already deployed to support millions of users nowadays, for example in 3G networks.
- Federation support. AAA provides federated authentication and authorization by design.
3.1. CoAP as EAP Lower-Layer
3.2. Proposed Architecture
3.3. General Operation Flow
3.4. Bootstrapping Security Associations
3.4.1. Key Hierarchy Design
3.4.2. CoAP Message Protection at Application Level: AUTH Option
3.4.3. CoAP Message Protection with DTLS
3.5. Bootstrapping State Definition and Management
3.6. Additional Considerations
3.6.1. CoAP Role Selection
3.6.2. Discovering the Controller
3.6.3. Trusting the Controller
3.6.4. Authorization Aspects
3.6.5. Cryptographic Suite and Protection Selection
3.6.6. Other Security Considerations
4. Experimental Results
4.1. Experimental Setup
4.2. Performance Evaluation
4.2.1. Message Length
4.2.2. Bootstrapping Time
4.2.3. Message Processing Time
4.2.4. Memory Footprint
4.2.5. Energy Consumption
5. Conclusions and Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef]
- Ishaq, I.; Carels, D.; Teklemariam, G.K.; Hoebeke, J.; Abeele, F.V.D.; Poorter, E.D.; Moerman, I.; Demeester, P. IETF standardization in the field of the internet of things (IoT): A survey. J. Sens. Actuator Netw. 2013, 2, 235–287. [Google Scholar] [CrossRef] [Green Version]
- Palattella, M.R.; Accettura, N.; Vilajosana, X.; Watteyne, T.; Grieco, L.A.; Boggia, G.; Dohler, M. Standardized protocol stack for the internet of (important) things. IEEE Commun. Surv. Tutor. 2013, 15, 1389–1406. [Google Scholar] [CrossRef]
- Tschofenig, H.; Arkko, J.; Thaler, D.; McPherson, D. Architectural Considerations in Smart Object Networking. Available online: https://tools.ietf.org/html/draft-tschofenig-smart-object-architecture-03 (accessed on 4 March 2016).
- Gutierrez, J.A. Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specification for Low-Rate Wireless Personal Area Networks (LR-WPANs) (IEEE Standard for Information Technology 802.15.4); Inst of Elect & Electronic: New York, NY, USA, 2003. [Google Scholar]
- Gomez, C.; Oller, J.; Paradells, J. Overview and evaluation of bluetooth low energy: An emerging low-power wireless technology. Sensors 2012, 12, 11734–11753. [Google Scholar] [CrossRef]
- Shelby, Z.; Bormann, C. 6LoWPAN. The Wireless Embedded Internet; Wiley/John Wiley & Sons Inc: Hoboken, NJ, USA, 2009. [Google Scholar]
- Cirani, S.; Ferrari, G.; Veltri, L. Enforcing security mechanisms in the IP-based internet of things: An algorithmic overview. Algorithms 2013, 6, 197–226. [Google Scholar] [CrossRef]
- Garcia-Morchon, O.; Kumar, S.; Keoh, S.; Hummen, R.; Struik, R. Security Considerations in the IP-Based Internet of Things. Available online: https://tools.ietf.org/html/draft-garcia-core-security-06 (accessed on 7 March 2016).
- IoT Discovery and Federation Controls Lacking. Available online: http://searchsecurity.techtarget.com/news/4500244846/IoT-discovery-and-federation-controls-lacking (accessed on 7 March 2016).
- De Laat, C.; Gross, G.; Gommans, L.; Vollbrecht, J.; Spence, D. Generic AAA Architecture. Available online: http://www.hjp.at/doc/rfc/rfc2903.html (accessed on 1 March 2016).
- Aboba, B.; Blunk, L.; Vollbrecht, J.; Carlson, J.; Levkowetz, H. Extensible Authentication Protocol (EAP). Available online: http://www.hjp.at/doc/rfc/rfc2903.html (accessed on 2 March 2016).
- Housley, R.; Aboba, B. Guidance for Authentication, Authorization, and Accounting (AAA) Key Management. Available online: http://www.rfc-editor.org/info/rfc4962 (accessed on 2 March 2016).
- Aboba, B.; Simon, D.; Eronen, P. Extensible Authentication Protocol (EAP) Key Management Framework. Available online: https://tools.ietf.org/html/rfc5247 (accessed on 2 March 2016).
- Heer, T.; Garcia-Morchon, O.; Hummen, R.; Keoh, S.L.; Kumar, S.S.; Wehrle, K. Security Challenges in the IP-Based Internet of Things. Wirel. Pers. Commun. 2011, 61, 527–542. [Google Scholar] [CrossRef]
- Das, S.; Ohba, Y. Provisioning Credentials for CoAP Applications Using EAP. Available online: https://tools.ietf.org/html/draft-ohba-core-eap-based-bootstrapping-01 (accessed on 7 March 2016).
- Smart Device Communications Reference Architecture—TR50_ETSI-20110321-002, 2011. Available online: http://ftp.tiaonline.org/TR-50/Public/Joint_TR-50_ETSI_TC_M2M/20110321_Joint_TR-50_ETSI_ TC_M2M/TR50_ETSI-20110321-002_Reference_Architecture.pdf (accessed on 7 March 2016).
- Fajardo, V.; Arkko, J.; Loughney, J.; Zorn, G. Diameter Base Protocol. RFC 6733 (Proposed Standard), 2012. Updated by RFC 7075. Available online: https://tools.ietf.org/html/rfc6733 (accessed on 2 March 2016).
- Salkintzis, A.K. Interworking techniques and architectures for WLAN/3G integration toward 4G mobile data networks. IEEE Wirel. Commun. 2004, 11, 50–61. [Google Scholar] [CrossRef]
- Wierenga, K.; Florio, L. Eduroam: Past, present and future. Comput. Methods Sci. Technol. 2005, 11, 169–173. [Google Scholar] [CrossRef]
- Rigney, C.; Willens, S.; Rubens, A.; Simpson, W. Remote Authentication Dial in User Service (RADIUS). RFC 2865 (Draft Standard), 2000. Updated by RFCs 2868, 3575, 5080, 6929. Available online: https://tools.ietf.org/html/rfc2865 (accessed on 2 March 2016).
- Shelby, Z.; Hartke, K.; Bormann, C. The Constrained Application Protocol (CoAP). RFC 7252 (Proposed Standard), 2014. Available online: https://tools.ietf.org/html/rfc7252 (accessed on 2 March 2016).
- ZigBee IP Specification—ZigBee Document 095023r34; ZigBee Alliance: USA, 2014; Available online: http://www.zigbee.org/zigbee-for-developers/network-specifications/zigbeeip/ (accessed on 2 March 2016).
- Osterlind, F.; Dunkels, A.; Eriksson, J.; Finne, N.; Voigt, T. Cross-Level Sensor Network Simulation with COOJA. In Proceedings of the 2006 31st IEEE Conference on Local Computer Networks, Tampa, FL, USA, 14–16 November 2006; pp. 641–648.
- Sanchez, P.M.; Lopez, R.M.; Skarmeta, A.F.G. Panatiki: A network access control implementation based on PANA for IoT devices. Sensors 2013, 13, 14888–14917. [Google Scholar] [CrossRef] [PubMed]
- López, G.; Cánovas, O.; Gómez, A.F.; Jiménez, J.D.; Marín, R. A network access control approach based on the AAA architecture and authorization attributes. J. Netw. Comput. Appl. 2007, 30, 900–919. [Google Scholar] [CrossRef]
- Rigney, C. RADIUS Accounting. RFC 2866 (Informational), 2000. Updated by RFCs 2867, 5080, 5997. Available online: https://tools.ietf.org/html/rfc2866 (accessed on 3 March 2016).
- Stewart, R. Stream Control Transmission Protocol. RFC 4960 (Proposed Standard), 2007. Updated by RFCs 6096, 6335, 7053. Available online: https://tools.ietf.org/html/rfc4960 (accessed on 3 March 2016).
- Kent, S.; Seo, K. Security Architecture for the Internet Protocol. RFC 4301 (Proposed Standard), 2005. Updated by RFCs 6040, 7619. Available online: http://www.hjp.at/doc/rfc/rfc4301.html (accessed on 3 March 2016).
- Dierks, T.; Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard), 2008. Updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685. Available online: https://tools.ietf.org/html/rfc5246 (accessed on 3 March 2016).
- Bersani, F.; Tschofenig, H. The EAP-PSK Protocol: A Pre-Shared Key Extensible Authentication Protocol (EAP) Method. RFC 4764 (Experimental), 2007. Available online: https://tools.ietf.org/html/rfc4764 (accessed on 3 March 2016).
- Dantu, R.; Clothier, G.; Atri, A. EAP Methods for Wireless Networks. Comput. Stand. Interfaces 2007, 29, 289–301. [Google Scholar] [CrossRef]
- DeKok, A. The Network Access Identifier. RFC 7542 (Proposed Standard), 2015. Available online: http://tools.ietf.org/html/rfc2486 (accessed on 3 March 2016).
- Hartman, S.; Howlett, J. A GSS-API Mechanism for the Extensible Authentication Protocol. RFC 7055 (Proposed Standard), 2013. Available online: https://tools.ietf.org/html/rfc7055 (accessed on 3 March 2016).
- Bormann, C.; Castellani, A.P.; Shelby, Z. Coap: An application protocol for billions of tiny internet nodes. IEEE Int. Comput. 2012, 16, 62–67. [Google Scholar] [CrossRef]
- Richardson, L.; Ruby, S. RESTful Web Services; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2008. [Google Scholar]
- Bormann, C.; Ersue, M.; Keranen, A. Terminology for Constrained-Node Networks. RFC 7228 (Informational), 2014. Available online: http://www.hjp.at/doc/rfc/rfc7228.html (accessed on 3 March 2016).
- Wang, Q.; Vilajosana, X.; Watteyne, T.; Sudhaakar, R.; Zand, P. Transporting CoAP Messages over IEEE802.15.4e Information Elements. Available online: https://tools.ietf.org/html/draft-wang-6tisch-6top-coapie-01.txt (accessed on 7 March 2016).
- Croft, W.; Gilmore, J. Bootstrap Protocol. RFC 951 (Draft Standard), 1985. Updated by RFCs 1395, 1497, 1532, 1542, 5494. Available online: http://www.hjp.at/doc/rfc/rfc951.html (accessed on 7 March 2016).
- Nakhjiri, M. AAA and Network Security for Mobile Access: RADIUS, Diameter, EAP, PKI and IP mobility; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Vacca, J.R. Computer and Information Security Handbook, 2nd ed.; Morgan Kaufmann: San Francisco, CA, USA, 2013. [Google Scholar]
- Patel, A.; Giaretta, G. Problem Statement for Bootstrapping Mobile IPv6 (MIPv6). RFC 4640 (Informational), 2006. Available online: http://www.rfc-editor.org/info/rfc4640 (accessed on 7 March 2016).
- Giaretta, G.; Kempf, J.; Devarapalli, V. Mobile IPv6 Bootstrapping in Split Scenario. RFC 5026 (Proposed Standard), 2007. Available online: http://www.hjp.at/doc/rfc/rfc5026.html (accessed on 7 March 2016).
- Kaufman, C.; Hoffman, P.; Nir, Y.; Eronen, P.; Kivinen, T. Internet Key Exchange Protocol Version 2 (IKEv2). RFC 7296 (INTERNET STANDARD), 2014. Updated by RFCs 7427, 7670. Available online: http://www.hjp.at/doc/rfc/rfc7296.html (accessed on 7 March 2016).
- Droms, R.; Arbaugh, W. Authentication for DHCP Messages. RFC 3118 (Proposed Standard), 2001. Available online: http://tools.ietf.org/html/rfc3118.html (accessed on 7 March 2016).
- Pruss, R.; Zorn, G. EAP Authentication Extensions for the Dynamic Host Configuration Protocol for Broadband. Available online: https://tools.ietf.org/html/draft-pruss-dhcp-auth-dsl-07 (accessed on 7 March 2016).
- 3GPP TS 33.220 : Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture (GBA). Available online: http://www.3gpp.org/DynaReport/33220.htm (accessed on 7 March 2016).
- Tschofenig, H.; Antonio, F.; Gomez-Skarmeta, J.P.; Lopez, R.M. Enriching Bootstrapping with Authorization Information. Available online: https://tools.ietf.org/id/draft-tschofenig-enroll-bootstrapping-saml-02.txt (accessed on 7 March 2016).
- Rescorla, E.; Modadugu, N. Datagram Transport Layer Security Version 1.2. RFC 6347 (Proposed Standard), 2012. Updated by RFC 7507. Available online: https://tools.ietf.org/html/rfc6347 (accessed on 7 March 2016).
- Hummen, R.; Moskowitz, R. HIP Diet EXchange (DEX). Available online: https://tools.ietf.org/html/draft-moskowitz-hip-dex-05 (accessed on 7 March 2016).
- IEEE Computer Society. IEEE Standard for Local and Metropolitan Area Networks - Port-Based Network Access Control. Available online: http://ieeexplore.ieee.org/servlet/opac?punumber=9828 (accessed on 7 March 2016).
- Watteyne, T.; Palattella, M.; Grieco, L. Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement. RFC 7554 (Informational), 2015. Available online: https://tools.ietf.org/html/rfc7554 (accessed on 7 March 2016).
- He, A.; Sarikaya, B. IoT Security Bootstrapping: Survey and Design Considerations. Available online: https://tools.ietf.org/html/draft-he-6lo-analysis-iot-sbootstrapping-00 (accessed on 7 March 2016).
- IETF - 6BAND (6lo Bootstrapping, Access for Networked Devices) Mailing List. Available online: https://www.ietf.org/mailman/listinfo/6band (accessed on 7 March 2016).
- Forsberg, D.; Ohba, Y.; Patil, B.; Tschofenig, H.; Yegin, A. Protocol for Carrying Authentication for Network Access (PANA). RFC 5191 (Proposed Standard), 2008. Updated by RFC 5872. Available online: http://www.rfc-editor.org/info/rfc5191 (accessed on 7 March 2016).
- O’Flynn, C.P.; Sarikaya, B.; Ohba, Y.; Cao, Z.; Cragie, R. Security Bootstrapping of Resource-Constrained Devices. Available online: https://tools.ietf.org/html/draft-oflynn-core-bootstrapping-03 (accessed on 7 March 2016).
- Marin-Lopez, R.; Pereniguez-Garcia, F.; Gomez-Skarmeta, F.; Ohba, Y. Network Access Security for the Internet: Protocol for Carrying Authentication for Network Access. IEEE Commun. Mag. 2012, 3, 84–92. [Google Scholar] [CrossRef]
- Sarikaya, B. Secure Bootstrapping Solution for Resource-Constrained Devices. Available online: https://tools.ietf.org/html/draft-sarikaya-6lo-bootstrapping-solution-00 (accessed on 7 March 2016).
- Sarikaya, B.; Cragie, R.; Moskowitz, R.; Ohba, Y.; Cao, Z. Security Bootstrapping Solution for Resource-Constrained Devices. Available online: https://tools.ietf.org/html/draft-sarikaya-core-sbootstrapping-05 (accessed on 7 March 2016).
- Dunkels, A.; Gronval, B.; Voigt, T. Contiki— A lightweight and flexible operating system for tiny networked sensors. In Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks, Dallas, TX, USA, 16–18 November 2004.
- Simon, D.; Aboba, B.; Hurst, R. The EAP-TLS Authentication Protocol. RFC 5216 (Proposed Standard). 2008.
- Wireless Personal Area Network (WPAN) Working Group (C/LM/WG802.15)— Recommended Practice for Transport of Key Management Protocol (KMP) Datagrams. IEEE PAR Document, 2011. Available online: https://development.standards.ieee.org/get-file/P802.15.9.pdf?t=74705100003 (accessed on 7 March 2016).
- ETSI. 102 690 V1. 1.1 (2011-10): “Machine-to-Machine Communications (M2M); Functional Architecture”; ETSI: France, 2011. Available online: http://www.etsi.org/deliver/etsi_ts/102600_102699/102690/01.01.01_60/ts_102690v010101p.pdf (accessed on 7 March 2016).
- Garcia-Morchon, O.; Keoh, S.L.; Kumar, S.; Moreno-Sanchez, P.; Vidal-Meca, F.; Ziegeldorf, J.H. Securing the IP-based internet of things with HIP and DTLS. In Proceedings of the Sixth ACM Conference on Security and privacy in wireless and mobile networks, Budapest, Hungary, 17–19 April 2013; pp. 119–124.
- Bergmann, O.; Gerdes, S.; Schäfer, S.; Junge, F.; Bormann, C. Secure bootstrapping of nodes in a CoAP network. In Proceedings of the 2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Paris, France, 1 April 2012; pp. 220–225.
- Korhonen, J. Applying Generic Bootstrapping Architecture for Use with Constrained Devices. In Proceedings of the Workshop on Smart Object Security, Paris, France, 23 April 2012.
- Rao, S.; Chendanda, D.; Deshpande, C.; Lakkundi, V. Implementing LWM2M in constrained IoT devices. In Proceedings of the 2015 IEEE Conference on Wireless Sensors (ICWiSe), Melaka, Malaysia, 24–26 August 2015; pp. 52–57.
- Shelby, Z.; Chauvenet, C. The IPSO Application Framework Draft-Ipso-App-Framework-04. Available online: http://www.ipso-alliance.org/wp-content/uploads/2016/01/draft-ipso-app-framework-04.pdf (accessed on 7 March 2016).
- Web of Things Security. Available online: https://github.com/w3c/web-of-things-framework/blob/master/security.md (accessed on 7 March 2016).
- ARM. Security Technology Building a Secure System Using TrustZone Technology (White Paper). Available online: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html (accessed on 7 March 2016).
- Hogberg, J. Mobile Provided Identity Authentication on the Web. In Proceedings of the W3C Workshop on Identity in the Browser, Mountain View, CA, USA, 24–25 May 2011.
- Hardjono, T.; Smith, N. Fluffy: Simplified Key Exchange for Constrained Environments. Available online: https://tools.ietf.org/html/draft-hardjono-ace-fluffy-02 (accessed on 7 March 2016).
- Erdtman, S.; Wahlstroem, E.; Selander, G.; Seitz, L.; Tschofenig, H. Authorization for the Internet of Things using OAuth 2.0. Available online: https://tools.ietf.org/html/draft-ietf-ace-oauth-authz-01 (accessed on 7 March 2016).
- Vucinic, M.; Tourancheau, B.; Watteyne, T.; Rousseau, F.; Duda, A.; Guizzetti, R.; Damon, L. DTLS Performance in Duty-Cycled Networks. In Proceedings of the 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, China, 30 August–2 September 2015.
- Moyer, B. Low Power, Wide Area. A Survey of Longer-Range IoT Wireless Protocols. Available online: http://www.eejournal.com/archives/articles/20150907-lpwa/ (accessed on 4 May 2015).
- Xiong, X.; Zheng, K.; Xu, R.; Xiang, W.; Chatzimisios, P. Low power wide area machine-to-machine networks: Key techniques and prototype. IEEE Commun. Mag. 2015, 53, 64–71. [Google Scholar] [CrossRef]
- Song, J.; Poovendran, R.; Lee, J.; Iwata, T. The Advanced Encryption Standard-Cipher-Based Message Authentication Code-Pseudo-Random Function-128 (AES-CMAC-PRF-128) Algorithm for the Internet Key Exchange Protocol (IKE). RFC 4615 (Proposed Standard), 2006. Available online: http://www.rfc-editor.org/info/rfc4615 (accessed on 7 March 2016).
- Song, J.; Poovendran, R.; Lee, J.; Iwata, T. The AES-CMAC Algorithm. RFC 4493 (Informational), 2006. Available online: http://www.hjp.at/doc/rfc/rfc4493.html (accessed on 7 March 2016).
- Billet, O.; Gilbert, H.; Ech-Chatbi, C. Selected Areas in Cryptography. In Proceedings of the 11th International Workshop, SAC 2004, Waterloo, ON, Canada, 9–10 August 2004; pp. 227–240.
- Yegin, A.; Shelby, Z. CoAP Security Options. Available online: https://tools.ietf.org/html/draft-yegin-coap-security-options-00 (accessed on 7 March 2016).
- Selander, G.; Mattsson, J.; Palombini, F.; Seitz, L. Object Security of CoAP (OSCOAP). Available online: https://tools.ietf.org/html/draft-selander-ace-object-security-03 (accessed on 7 March 2016).
- Schaad, J. CBOR Encoded Message Syntax. Available online: https://tools.ietf.org/id/draft-ietf-cose-msg-10.txt (accessed on 7 March 2016).
- Eronen, P.; Tschofenig, H. Pre-Shared Key Ciphersuites for Transport Layer Security (TLS). RFC 4279 (Proposed Standard), 2005. Available online: http://www.hjp.at/doc/rfc/rfc4279.html (accessed on 7 March 2016).
- Kovatsch, M.; Bergmann, O.; Bormann, C. CoAP Implementation Guidance. Available online: https://tools.ietf.org/html/draft-ietf-lwig-coap-03 (accessed on 7 March 2016).
- Vollbrecht, J.; Eronen, P.; Petroni, N.; Ohba, Y. State Machines for Extensible Authentication Protocol (EAP) Peer and Authenticator. RFC 4137 (Informational), 2005. Available online: https://tools.ietf.org/html/rfc4137 (accessed on 7 March 2016).
- Krco, S.; Shelby, Z.; Bormann, D.C. CoRE Resource Directory. Available online: https://tools.ietf.org/html/draft-shelby-core-resource-directory-05 (accessed on 7 March 2016).
- Howlett, J.; Hartman, S.; Perez-Mendez, A. A RADIUS Attribute, Binding, Profiles, Name Identifier Format, and Confirmation Methods for SAML. Available online: https://tools.ietf.org/html/draft-ietf-abfab-aaa-saml-13 (accessed on 7 March 2016).
- Crockford, D. The application/json Media Type for JavaScript Object Notation (JSON). RFC 4627 (Informational), 2006. Obsoleted by RFC 7159. Available online: https://tools.ietf.org/html/rfc4627 (accessed on 7 March 2016).
- Bormann, C.; Hoffman, P. Concise Binary Object Representation (CBOR). RFC 7049 (Proposed Standard), 2013. Available online: http://tools.ietf.org/html/rfc7049?ref=dzone (accessed on 7 March 2016).
- Qanbari, S.; Mahdizadeh, S.; Dustdar, S.; Behinaein, N.; Rahimzadeh, R. Diameter of Things (DoT): A Protocol for Real-Time Telemetry of IoT Applications. Available online: https://tools.ietf.org/html/draft-tuwien-dsg-diameterofthings-01 (accessed on 7 March 2016).
- Whiting, D.; Housley, R.; Ferguson, N. Counter with CBC-MAC (CCM). RFC 3610 (Informational), 2003. Available online: http://tools.ietf.org/html/rfc3610 (accessed on 7 March 2016).
- Nelson, D. Crypto-Agility Requirements for Remote Authentication Dial-In User Service (RADIUS). RFC 6421 (Informational), 2011. Available online: http://tools.ietf.org/html/rfc6421.html (accessed on 7 March 2016).
- Zorn, G.; Zhang, T.; Walker, J.; Salowey, J. Cisco Vendor-Specific RADIUS Attributes for the Delivery of Keying Material. RFC 6218 (Informational), 2011. Available online: http://tools.ietf.org/html/rfc6218 (accessed on 7 March 2016).
- Naranjo, J.A.M.; Orduña, P.; Gómez-Goiri, A.; López-de Ipiña, D.; Casado, L.G. Ubiquitous Computing and Ambient Intelligence. In Proceedings of the 6th International Conference, UCAmI 2012, Vitoria-Gasteiz, Spain, 3–5 December 2012; pp. 33–41.
- Österlind, F.; Dunkels, A.; Erikson, J.; Finne, N.; Voigt, T. Cross-Level Sensor Network Simulation with COOJA. In Proceedings of the 2006 31st IEEE Conference on Local Computer Networks, Tampa, FL, USA, 14–16 November 2006.
- Using Cooja Test Scripts to Automate Simulations. Available online: https://github.com/contiki-os/contiki/wiki/Using-Cooja-Test-Scripts-to-Automate-Simulations 2014 (accessed on 7 March 2016).
- Moreno-Sanchez, P.; Marin-Lopez, R.; Vidal-Meca, F. An open source implementation of the protocol for carrying authentication for network access: OpenPANA. IEEE Netw. 2014, 28, 49–55. [Google Scholar] [CrossRef]
- Moreno-Sanchez, P.; Marin-Lopez, R. PANATIKI Sourceforge Project, 2013. Available online: http://sourceforge.net/projects/panatiki (accessed on 7 March 2016).
- Mills, A. Cantcoap: CoAP Implementation that Focuses on Simplicity. Available online: https://github. com/staropram/cantcoap (accessed on 7 March 2016).
- Bergmann, O. Libcoap: C-Implementation of CoAP. Available online: https://libcoap.net/ (accessed on 7 March 2016).
- Kovatsch, M.; Duquennoy, S.; Dunkels, A. A Low-Power CoAP for Contiki. In Proceedings of the 8th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS 2011), Valencia, Spain, 17–21 October 2011.
- Dekok, A. FreeRadius: The World’s Most Popular RADIUS Server. Available online: http://freeradius.org (accessed on 7 March 2016).
- Clausen, T.; Herberg, U.; Philipp, M. A Critical Evaluation of the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL). In Proceedings of the 2011 IEEE 7th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Wuhan, China, 10–12 October 2011; pp. 365–372.
- Jain, R. The Art of Comp Systems Perform Analysis: Techniques for Experimental Design, Measurement, Simulation and Modelling; Wiley: Hoboken, NJ, USA, 1991. [Google Scholar]
- Dunkels, A.; Eriksson, J.; Finne, N.; Tsiftes, N. Powertrace: Network-Level Power Profiling for Low-Power Wireless networks; Technical Report T2011:05; Swedish Institute of Computer Science: Stockholm, Sweden, 2011. [Google Scholar]
- Arkko, J.; Haverinen, H. Extensible Authentication Protocol Method for 3rd Generation Authentication and Key Agreement (EAP-AKA). RFC 4187 (Informational), 2006. Updated by RFC 5448. Available online: http://tools.ietf.org/html/rfc4187.html (accessed on 7 March 2016).
Testbed PC | |
---|---|
CPU | Intel(R) Core(TM) i5-2400 CPU @ 3.10GH |
RAM | 4GiB DIMM DDR3 Synchronous 1333 MHz |
O.S. | Ubuntu Server 12.04.5 LTS - 32 bits |
Kernel | 3.13.0-32-generic |
CoAP-EAP | PANATIKI | % CoAP-EAP Reduction | |||||
---|---|---|---|---|---|---|---|
Msg. | LL | LL+EAP | Msg. | LL | LL+EAP | LL | LL+EAP |
POST | 13 | 13 | PCI | 16 | 16 | ||
POST(nonce-c) | 18 | 18 | PAR | 40 | 40 | ||
ACK(nonce-s) | 20 | 20 | PAN | 40 | 40 | ||
POST(Req/Id) | 17 | 22 | PAR(Req/Id) | 27 | 32 | ||
ACK(Res/Id) | 9 | 20 | PAN(Res/Id) | 25 | 36 | ||
POST(EAP-PSK 1) | 17 | 46 | PAR(EAP-PSK 1) | 27 | 56 | ||
ACK(EAP-PSK 2) | 9 | 69 | PAR(EAP-PSK 2) | 24 | 84 * | ||
POST(EAP-PSK 3) | 17 | 76 * | PAR(EAP-PSK 3) | 25 | 84 * | ||
ACK(EAP-PSK 4) | 9 | 52 | PAR(EAP-PSK 4) | 25 | 68 | ||
POST(EAP Success) | 36 | 40 | PAR(EAP Success) | 84 | 88 * | ||
ACK | 27 | 27 | PAN | 52 | 52 | ||
Total | 192 | 403 | 385 | 596 | 50.1% | 32.4% |
Empty Main | Network Support (e.g., IP/UDP) | EAP | Lower Layer | Total Size | |
---|---|---|---|---|---|
PANATIKI | 62.7 kB | 24.9 kB | 9.4 kB | 5.9 kB | 102.9 kB * |
CoAP-EAP | 62.7 kB | 24.9 kB | 9.4 kB | 3.8 kB (+4.6 kB cantcoap) | 105.4 kB |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Carrillo, D.; Marin-Lopez, R. Lightweight CoAP-Based Bootstrapping Service for the Internet of Things. Sensors 2016, 16, 358. https://doi.org/10.3390/s16030358
Garcia-Carrillo D, Marin-Lopez R. Lightweight CoAP-Based Bootstrapping Service for the Internet of Things. Sensors. 2016; 16(3):358. https://doi.org/10.3390/s16030358
Chicago/Turabian StyleGarcia-Carrillo, Dan, and Rafael Marin-Lopez. 2016. "Lightweight CoAP-Based Bootstrapping Service for the Internet of Things" Sensors 16, no. 3: 358. https://doi.org/10.3390/s16030358
APA StyleGarcia-Carrillo, D., & Marin-Lopez, R. (2016). Lightweight CoAP-Based Bootstrapping Service for the Internet of Things. Sensors, 16(3), 358. https://doi.org/10.3390/s16030358