Determination of the Optimum Harvest Window for Apples Using the Non-Destructive Biospeckle Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biospeckle Activity (BA)
2.2. Firmness (F)
2.3. Soluble Solid Content (SSC)
2.4. Titratable Acidity (TA)
2.5. Starch Index (SI)
2.6. Starch Content (SC)
2.7. Ethylene and Carbon Dioxide Emission
2.8. Maturity Index
2.9. Statistical Analysis
3. Results
3.1. Preharvest Monitoring for the Optimum Harvest Date
3.2. Postharvest Quality of Apples
3.3. Biospeckle Activity
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vielma, M.S.; Matta, F.B.; Silval, J.L. Optimal harvest time of various apple cultivars grown in Northern Mississippi. J. Am. Pomol. Soc. 2008, 62, 13–20. [Google Scholar]
- Rizzolo, A.; Grassi, M.; Zerbini, P.E. Influence of harvest date on ripening and volatile compounds in the scab-resistant apple cultivar ‘Golden Orange’. J. Hortic. Sci. Biotechnol. 2006, 81, 681–690. [Google Scholar] [CrossRef]
- Kviklienė, N. Effect of harvest date on apple fruit quality and storage ability. Folia Hortic. 2001, 13, 97–102. [Google Scholar]
- Franelli, K.; Casera, C. Influence of Harvest Date on Fruit Quality and Storability in the Varieties Braeburn and Gala; Office for Official Publications of the European Communities: Rue Mercier, Luxembourg, 1996; pp. 105–115. [Google Scholar]
- Merész, P.; Sass, P.; Lovasz, T. Evaluation of Harvest Indexes of Apples Grown in Hungary; Office for Official Publications of the European Communities: Luxembourg Rue Mercier, Luxembourg, 1996; pp. 53–60. [Google Scholar]
- Streif, J. Optimum harvest date for different apple cultivar in the ‘Bodensee’ area. In Proceedings of the Working Group on Optimum Harvest Date COST 94, Lofthus, Norway, 9–10 June 1996; pp. 15–20.
- De Long, J.M.; Prange, R.K.; Harrison, P.A.; Shofield, R.A.; de Ell, J.R. Using the Streif index as a final harvest window for controlled-atmosphere storage of apples. Hortscience 1999, 34, 1251–1257. [Google Scholar]
- Rutkowski, K.P.; Michalczuk, B.; Konopacki, P. Nondestructive determination of ‘Golden Delicious’ apple quality and harvest maturity. J. Fruit Ornam. Plant Res. 2008, 16, 39–52. [Google Scholar]
- Zerbini, P.E.; Grassi, M.; Cubeddu, R.; Pifferi, A.; Torricelli, A. Time-resolved reflectance spectroscopy can detect internal defects in pears. Acta Hortic. 2003, 599, 359–365. [Google Scholar] [CrossRef]
- Juan, J.L.; Frances, J.; Montesinos, E.; Camps, F.; Bonany, J. Effect of harvest date on quality and decay losses after cold storage of Golden Delicious apples in Girona. Acta Hortic. 1999, 485, 195–201. [Google Scholar] [CrossRef]
- Hribar, J.; Plestenjak, A.; Simsic, M.; Pitako, D. Influence of Ecological Conditions on Optimum Harvest Date in Slovenia; Office for Official Publications of the European Communities: Rue Mercier, Luxembourg, 1996; pp. 49–52. [Google Scholar]
- Ingle, M.; D’Souza, M.C.; Townsend, E.C. Fruit characteristics of York apples during development and after storage. Hortscience 2000, 35, 95–98. [Google Scholar]
- Braun, H.; Brosh, B.; Ecker, P.; Krumbock, K. Changes in quality off apples before, during and after CA-cold storage. Obstau Fruchteverwert. 1995, 45, 143–206. [Google Scholar]
- Skrzynski, J. Optimum Harvest Date Study of 4 Apple Cultivars in Southern Poland; Office for Official Publications of the European Communities: Rue Mercier, Luxembourg, 1996; pp. 61–66. [Google Scholar]
- Saevels, S.; Lammertyn, J.; Berna, A.Z.; Veraverbeke, E.A.; Di Natale, C.; Nicolaї, B.M. Electronic nose as a non-destructive tool to evaluate the optimal harvest date of apples. Postharvest Biol. Technol. 2003, 30, 3–14. [Google Scholar] [CrossRef]
- Łysiak, G. The determination of harvest index of ‘Sampion’ apples intended for long storage. Acta Sci. Pol. Hortorum Cultus 2011, 10, 273–282. [Google Scholar]
- De Jager, A.; Roelofs, F. Prediction of the Optimum Harvest Date of Jonagold; Office for Official Publications of the European Communities: Rue Mercier, Luxembourg, 1996; pp. 21–31. [Google Scholar]
- Menesatti, P.; Zanella, A.; D’Andrea, A.; Costa, C.; Paglia, G.; Pallottino, F. Supervised Multivariate Analysis of Hyper-Spectral NIR Images to Evaluate the Starch Index of Apples. Food Bioprocess Technol. 2009, 2, 308–314. [Google Scholar] [CrossRef]
- Zude-Sasse, Z.; Truppel, I.; Herold, B. An approach to non-destructive apple fruit chlorophyll determination. Postharvest Biol. Technol. 2002, 25, 123–133. [Google Scholar] [CrossRef]
- Firtha, F.; Fekete, A.; Kaszab, T.; Gillay, B.; Nogula-Nagy, M.; Kovács, Z.; Kantor, D.B. Methods for improving image quality and reducing data load of NIR hyperspectral images. Sensors 2008, 8, 3287–3298. [Google Scholar] [CrossRef]
- Peng, Y.; Lu, R. Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biol. Technol. 2008, 48, 52–62. [Google Scholar] [CrossRef]
- Baranyai, L.; Zude, M. Analysis of laser light propagation in kiwifruit using backscattering imaging and Monte Carlo simulation. Comput. Electron. Agric. 2009, 69, 33–39. [Google Scholar] [CrossRef]
- Qing, Z.; Ji, B.; Zude, M. Predicting soluble solid content and firmness in apple fruit by means of laser light backscattering image analysis. J. Food Eng. 2007, 82, 58–67. [Google Scholar] [CrossRef]
- Bauriegel, E.; Giebel, A.; Herppich, W.B. Hyperspectral and chlorophyll fluorescence imaging to analyse the impact of Fusarium culmorum on the photosynthetic integrity of infected wheat ears. Sensors 2011, 11, 3765–3779. [Google Scholar] [CrossRef] [PubMed]
- Herppich, W.B. Application Potential of Chlorophyll Fluorescence Imaging Analysis in Horticultural Research. In Proceedings of the 6th International Symposium: Fruit, Nut and Vegetable Production Engineering, Potsdam, Germany, 11–19 September 2001; pp. 609–614.
- Herppich, W.B.; Linke, M.; Landahl, S.; Gzik, A. Preharvest and postharvest responses of radish to reduced water supply during growth. Acta Hortic. 2001, 553, 89–90. [Google Scholar] [CrossRef]
- Skierucha, W.; Wilczek, A.; Szypłowska, A. Dielectric spectroscopy in agrophysics. Int. Agrophys. 2012, 26, 187–197. [Google Scholar] [CrossRef]
- Zdunek, A.; Pieczywek, P.M.; Adamiak, A.; Kurenda, A. The biospeckle method for the investigation of agricultural crops: A review. Opt. Laser Eng. 2014, 52, 276–285. [Google Scholar] [CrossRef]
- Xu, Z.; Joenathan, C.; Khorana, B.M. Temporal and spatial properties of the time—Varying speckles of botanical specimens. Opt. Eng. 1995, 34, 1487–1502. [Google Scholar]
- Zhao, Y.; Wang, J.; Wu, X.; Williams, F.W.; Schmidt, R.J. Point-wise and whole-field laser speckle intensity fluctuation measurements applied to botanical specimens. Opt. Laser Eng. 1997, 28, 443–456. [Google Scholar] [CrossRef]
- Draijer, M.; Hondebrink, E.; van Leeuwen, T.; Steenbergen, W. Review of laser speckle contrast techniques for visualizing tissue perfusion. Laser Med. Sci. 2009, 24, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Braga, R.A.; Dupuy, L.; Pasqual, M.; Cardosos, R.R. Live biospeckle laser imaging of root tissues. Eur. Biophys. J. 2009, 38, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Zdunek, A.; Herppich, W.B. Relation of biospeckle activity with chlorophyll content in apples. Postharvest Biol. Technol. 2012, 64, 58–63. [Google Scholar] [CrossRef]
- Zdunek, A.; Cybulska, J. Relation of Biospeckle Activity with Quality Attributes of Apples. Sensors 2011, 11, 6317–6327. [Google Scholar] [CrossRef] [PubMed]
- Adamiak, A.; Zdunek, A.; Kurenda, A.; Rutkowski, K. Application of Biospeckle Method for Monitoring the Bull’s Eye Rot Development and Quality Changes of Apples Subjected to Various Storage Methods—Preliminary Studies. Sensors 2012, 12, 3215–3227. [Google Scholar] [CrossRef] [PubMed]
- Kurenda, A.; Adamiak, A.; Zdunek, A. Temperature effect on apple biospeckle activity evaluated with different indices. Postharvest Biol. Technol. 2012, 67, 118–123. [Google Scholar] [CrossRef]
- Szymańska-Chargot, M.; Adamiak, A.; Zdunek, A. Pre-harvest monitoring of apple fruits development with the use of biospeckle method. Sci. Hortic. 2012, 145, 23–28. [Google Scholar] [CrossRef]
- Nassif, R.; Pellen, F.; Magné, C.; Le Jeune, B.; Le Brun, G.; Abboud, M.L. Scattering through fruits during ripening: Laser speckle technique correlated to biochemical and fluorescence measurements. Opt. Exp. 2012, 20, 23887–23897. [Google Scholar] [CrossRef] [PubMed]
- Pajuelo, M.; Baldwin, G.; Rabal, H.; Cap, N.; Arizaga, R.; Trivi, M. Bio-speckle assessment of bruising in fruits. Opt. Lasers Eng. 2003, 40, 13–24. [Google Scholar] [CrossRef]
- Rabelo, G.F.; Braga, R.A.; Fabbro, I.M.D.; Trivi, M.R.; Rabal, H.J.; Arizaga, R. Laser speckle techniques in quality evaluation of Orange fruits. Rev. Bras. Eng. Agríc. Ambient. 2005, 9, 570–575. [Google Scholar] [CrossRef]
- Romero, G.G.; Martinez, C.C.; Alanis, E.E.; Salazar, G.A.; Broglia, V.G.; Alvarez, L. Bio-speckle activity applied to the assessment of tomato fruit ripening. Biosys. Eng. 2009, 103, 116–119. [Google Scholar] [CrossRef]
- Braga, R.A.; Dal Fabbro, I.M.; Borem, F.M.; Rabelo, G.; Arizaga, R.; Rabal, H.J.; Trivi, M. Assessment of seed viability by laser speckle techniques. Biosys. Eng. 2003, 86, 287–294. [Google Scholar] [CrossRef]
- Braga, R.A.; Rabelo, G.F.; Granato, L.R.; Santos, E.F.; Machado, J.C.; Arizaga, R.; Rabal, H.J.; Trivi, M. Detection of fungi in beans by the laser biospeckle technique. Biosys. Eng. 2005, 91, 465–469. [Google Scholar] [CrossRef]
- Hoehn, E.; Gasser, F.; Guggenbühl, B.; Künsch, U. Efficacy of instrumental measurements for determination of minimum requirements of firmness, soluble solids, and acidity of several apple varieties in comparison to consumer expectations. Postharvest Biol. Technol. 2003, 27, 27–37. [Google Scholar] [CrossRef]
- Stevenson, D.G.; Domoto, P.A.; Jay-lin, J. Structures and functional properties of apple (Malus domestica Borkh.) fruit starch. Carbohydr. Polym. 2006, 63, 432–440. [Google Scholar] [CrossRef]
- Olsen, K.L.; Martin, G.C. Influence of apple bloom date on maturity and storage quality of ‘Starking Delicious’ apples. J. Am. Soc. Hortic. Sci. 1980, 105, 183–186. [Google Scholar]
- Little, C.R.; Holmes, R.J. Storage Technology for Apples and Pears: A Guide to Production, Postharvest Treatment and Storage of Pome Fruit in Australia; Agriculture Victoria: Knoxfield, Australia, 2000. [Google Scholar]
- Fleancu, M. Correlations among some physiological processes in apple fruit during growing and maturation processes. Int. J. Agric. Biol. 2007, 9, 613–116. [Google Scholar]
- Abeles, F.B.; Morgan, P.W.; Saltveit, M.E. Ethylene in Plant Biology; San Diego Academic Press: San Diego, CA, USA, 1992; p. 414. [Google Scholar]
- Brady, C.J. Fruit ripening. Annu. Rev. Plant Physiol. 1987, 38, 155–178. [Google Scholar] [CrossRef]
- Goldschmidt, E.E. Pigment changes associated with fruit maturation and their control. In Senescence in Plants; Thimann, K.V., Ed.; CRC Press Inc.: Boca Raton, FL, USA, 1980; pp. 207–217. [Google Scholar]
- Ezura, H.; Hiwasa-Tanase, K. Fruit Development. In Plant Developmental Biology-Biotechnological Perspectives; Springer-Verlag Berlin Heidelberg: Berlin, Germany, 2010; Volume 1, pp. 301–318. [Google Scholar]
- Sendra, H.; Murialdo, S.; Passoni, L. Dynamic laser speckle to detect motile bacterial response of Pseudomonas aeruginosa. J. Phys. Conf. Ser. 2007, 90. [Google Scholar] [CrossRef]
- Braga, R.A., Jr.; Horgan, G.W.; Enes, A.M.; Miron, D.; Rabelo, G.F.; Barreto Filho, J.B. Biological feature isolation in biospeckle laser images. Comput. Electron. Agric. 2007, 58, 123–132. [Google Scholar]
Development Stage | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | F-Value | |
---|---|---|---|---|---|---|---|---|---|---|
Sampling date | 3 July | 27 July | 13 August | 27 August | 10 September | 18 September | 27 September | 4 October | ||
Day of year | 185 | 209 | 226 | 240 | 254 | 262 | 271 | 278 | ||
Cultivar Ligol | Starch content (mg/100 g dry weight) | 13.16 (±0.53) a | 11.58 (±0.70) a,b | 10.36 (±1.14) a,b | 8.58 (±0.26) b,c | 8.07 (±0.46) b,c | 5.72 (±3.02) c,d | 2.46 (±1.10) d,e | 1.88 (±0.39) e | 31.58 * |
Titratable acidity (g/100 g of fresh weight) | 0.542 (±0.010) a | 0.379 (±0.032) b | 0.332 (±0.016) c | 0.301 (±0.014) d | 0.278 (±0.002) d | 0.230 (±0.004) e | 0.226 (±0.004) e | 0.218 (±0.002) e | 176.74 * | |
Total soluble solids content (°Brix) | 8.34 (±0.05) a | 9.78 (±0.04) b | 10.52 (±0.11) c | 11.94 (±0.05) d | 12.00 (±0.04) e | 12.40 (±0.00) f | 15.54 (±0.05) g | 13.18 (±0.04) h | 4013.20 * | |
Cultivar Szampion | Starch content (mg/100 g fresh weight) | 8.78 (±0.70) a,c | 11.56 (±0.68) b | 8.29 (±0.83) a,c,d | 7.58 (±0.05) a,c,d | 10.22 (±0.69) b,c | 5.55 (±2.29) d,e | 6.36 (±0.41) a,d | 2.97 (±0.27) e | 23.23 * |
Titratable acidity (g/100 g of fresh weight) | 0.362 (±0.001) a | 0.269 (±0.013) b | 0.186 (±0.004) c | 0.186 (±0.012) c | 0.189 (±0.004) c | 0.127 (±0.001) d | 0.134 (±0.004) d | 0.138 (±0.001) d | 406.70 * | |
Total soluble solids content (°Brix) | 9.30 (±0.16) a | 10.04 (±0.05) b | 11.00 (±0.10) c | 12.54 (±0.15) d | 12.50 (±0.07) d | 13.30 (±0.10) e | 13.68 (±0.15) f | 14.66 (±0.09) g | 1300.90 * |
No. of Sampling Date | 5 | 6 | 7 | 8 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sampling Date | 10 September | F-Value | 18 September | F-value | 27 September | F-value | 4 October | F-Value | |||
Month of Storage | Shelf Life Day | ||||||||||
LIGOL | Firmness (N) | 1 | 1 | 65.93 (±3.03) a | 1.43 | 68.76 (±6.48) a | 3.45 * | 69.20 (±8.58) a | 4.22 * | 66.18 (±5.29) a | 3.85 * |
7 | 58.27 (±5.73) b | 57.48 (±5.83) b,c | 59.69 (±8.27) a,b | 58.61 (±9.22) a,b | |||||||
2 | 1 | 57.37 (±5.52) b,c | 61.85 (±8.82) a,b | 51.75 (±7.23) b,c | 67.18 (±12.49) a | ||||||
7 | 50.57 (±6.23) c,d | 52.60 (±10.74) b,c | 55.75 (±11.45) b | 48.21 (±5.67) b,c | |||||||
3 | 1 | 49.81 (±6.23) d | 51.28 (±7.89) c | 42.87 (±4.85) c | 50.04 (±13.20) b,c | ||||||
7 | 47.71 (±8.77) d | 51.84 (±9.30) c | 42.29 (±7.28) c | 44.73 (±5.17) c | |||||||
Biospeckle activity BA | 1 | 1 | 0.475 (±0.065) a | 5.90 * | 0.529 (±0.049) a | 5.30 * | 0.580 (±0.058) b | 9.09 * | 0.607 (±0.074) a | 22.39 * | |
7 | 0.500 (±0.064) a,b,c | 0.562 (±0.049) a,b | 0.473 (±0.058) a | 0.457 (±0.076) b | |||||||
2 | 1 | 0.526 (±0.088) a,b,c | 0.566 (±0.057) b | 0.528 (±0.072) b | 0.530 (±0.062) c | ||||||
7 | 0.515 (±0.064) c | 0.535 (±0.064) a,b | 0.523 (±0.096) a,b | 0.534 (±0.059) c | |||||||
3 | 1 | 0.539 (±0.093) b,c | 0.550 (±0.056) a,b | 0.497 (±0.077) a | 0.546 (±0.050) c | ||||||
7 | 0.482 (±0.048) a,b | 0.519 (±0.067) a | 0.521 (±0.056) a,b | 0.542 (±0.069) c | |||||||
SZAMPION | Firmness (N) | 1 | 1 | 59.35 (±6.52) a | 45.66 * | 53.25 (±7.57) a | 39.40 * | 39.22 (±4.47) a | 10.30 * | 36.92 (±5.90) a | 10.04 * |
7 | 29.08 (±3.59) b,c | 25.94 (±4.41) b | 25.91 (±4.08) b,c | 21.28 (±3.71) c | |||||||
2 | 1 | 31.76 (±5.09) b | 29.10 (±2.69) b | 26.81 (±2.78) b | 28.80 (±3.40) b | ||||||
7 | 23.80 (±4.42) c | 24.01 (±2.42) b | 22.57 (±4.82) b,c | 21.59 (±3.97) c | |||||||
3 | 1 | 31.15 (±4.46) b | 28.29 (±4.90) b | 25.97 (±3.20) b,c | 25.65 (±4.28) b,c | ||||||
7 | 25.61 (±5.11) c | 26.86 (±7.60) b | 21.93 (±4.17) c | 21.25 (±5.13) c | |||||||
Biospeckle activity BA | 1 | 1 | 0.609 (±0.099) a,b | 5.67 * | 0.686 (±0.055) a,b | 0.19 | 0.740 (±0.033) a | 19.94 * | 0.704 (±0.062) a | 10.42 * | |
7 | 0.621 (±0.063) b | 0.679 (±0.059) a,b | 0.606 (±0.038) c | 0.621 (±0.056) b | |||||||
2 | 1 | 0.622 (±0.058) b | 0.675 (±0.060) b | 0.639 (±0.059) b | 0.653 (±0.046) a,b | ||||||
7 | 0.594 (±0.071) b | 0.656 (±0.082) a,b | 0.626 (±0.070) b,c | 0.682 (±0.101) a | |||||||
3 | 1 | 0.625 (±0.058) b | 0.649 (±0.045) a,b | 0.618 (±0.058) b,c | 0.657 (±0.045) a,b | ||||||
7 | 0.557 (±0.060) a | 0.635 (±0.087) a | 0.623 (±0.072) b,c | 0.666 (±0.081) a,b |
BA | F | SI | SSC | Streif Index | ||
---|---|---|---|---|---|---|
Ligol | BA | 1.00 | ||||
F | −0.53 * | 1.00 | ||||
SI | 0.43 * | −0.67 * | 1.00 | |||
SSC | 0.63 * | −0.92 * | 0.70 * | 1.00 | ||
Streif Index | −0.55 * | 0.94 * | −0.79 * | −0.95 * | 1.00 | |
Szampion | BA | 1.00 | ||||
F | −0.51 * | 1.00 | ||||
SI | 0.44 * | −0.67 * | 1.00 | |||
SSC | 0.40 * | −0.85 * | 0.89 * | 1.00 | ||
Streif Index | −0.47 * | 0.91 * | −0.80 * | −0.95 * | 1.00 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skic, A.; Szymańska-Chargot, M.; Kruk, B.; Chylińska, M.; Pieczywek, P.M.; Kurenda, A.; Zdunek, A.; Rutkowski, K.P. Determination of the Optimum Harvest Window for Apples Using the Non-Destructive Biospeckle Method. Sensors 2016, 16, 661. https://doi.org/10.3390/s16050661
Skic A, Szymańska-Chargot M, Kruk B, Chylińska M, Pieczywek PM, Kurenda A, Zdunek A, Rutkowski KP. Determination of the Optimum Harvest Window for Apples Using the Non-Destructive Biospeckle Method. Sensors. 2016; 16(5):661. https://doi.org/10.3390/s16050661
Chicago/Turabian StyleSkic, Anna, Monika Szymańska-Chargot, Beata Kruk, Monika Chylińska, Piotr Mariusz Pieczywek, Andrzej Kurenda, Artur Zdunek, and Krzysztof P. Rutkowski. 2016. "Determination of the Optimum Harvest Window for Apples Using the Non-Destructive Biospeckle Method" Sensors 16, no. 5: 661. https://doi.org/10.3390/s16050661
APA StyleSkic, A., Szymańska-Chargot, M., Kruk, B., Chylińska, M., Pieczywek, P. M., Kurenda, A., Zdunek, A., & Rutkowski, K. P. (2016). Determination of the Optimum Harvest Window for Apples Using the Non-Destructive Biospeckle Method. Sensors, 16(5), 661. https://doi.org/10.3390/s16050661