An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Automatic Observation System of the Vegetation Canopy
2.2. Simulated Data
2.2.1. Simulation of Canopy Spectral Data
Simulation of Spectral Data under Different Parameters of the Canopy and Leaves
Simulation of Spectral Data under Different Solar Zenith Angles
2.2.2. Simulation of the Spectral Resolution and Spectral Sampling Interval
2.2.3. Simulation of Noise
2.3. Experimental Scheme
3. Results and Analysis
3.1. Analysis of Simulation Data
3.1.1. Selection of Algorithm Parameters
3.1.2. Analysis of Each Fluorescence Extraction Algorithm Using Data with Different Chlorophyll Contents
3.1.3. Analysis of Each Fluorescence Extraction Algorithm for Data with Different Leaf Area Indices
3.1.4. Analysis of Each Fluorescence Extraction Algorithm for Data with Different Solar Zenith Angles
3.2. Analysis of Measured Data
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Butler, W.L. Energy Distribution in the Photochemical Apparatus of Photosynthesis. Ann. Rev. Plant Physiol. 2003, 29, 345–378. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Lee, J.E.; Frankenberg, C.; van der Tol, C.; Berry, J.A.; Guanter, L.; Boyce, C.K.; Fisher, J.B.; Morrow, E.; Worden, J.R.; Asefi, S.; et al. Forest productivity and water stress in Amazonia: Observations from GOSAT chlorophyll fluorescence. Proc. Biol. Sci. R. Soc. 2013, 280. [Google Scholar] [CrossRef] [PubMed]
- Porcar-Castell, A.; Tyystjarvi, E.; Atherton, J.; van der Tol, C.; Flexas, J.; Pfundel, E.E.; Moreno, J.; Frankenberg, C.; Berry, J.A. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges. J. Exp. Bot. 2014, 65, 4065–4095. [Google Scholar] [CrossRef] [PubMed]
- Porcar-Castell, A.; Mac Arthur, A.; Rossini, M.; Eklundh, L.; Pacheco-Labrador, J.; Anderson, K.; Balzarolo, M.; Martín, M.P.; Jin, H.; Tomelleri, E.; et al. EUROSPEC: At the interface between remote sensing and ecosystem CO2 flux measurements in Europe. Biogeosci. Discuss. 2015, 12, 13069–13121. [Google Scholar] [CrossRef]
- Cogliati, S.; Rossini, M.; Julitta, T.; Meroni, M.; Schickling, A.; Burkart, A.; Pinto, F.; Rascher, U.; Colombo, R. Continuous and long-term measurements of reflectance and sun-induced chlorophyll fluorescence by using novel automated field spectroscopy systems. Remote Sens. Environ. 2015, 164, 270–281. [Google Scholar] [CrossRef]
- Meroni, M.; Barducci, A.; Cogliati, S.; Castagnoli, F.; Rossini, M.; Busetto, L.; Migliavacca, M.; Cremonese, E.; Galvagno, M.; Colombo, R.; et al. The hyperspectral irradiometer, a new instrument for long-term and unattended field spectroscopy measurements. Rev. Sci. Instrum. 2011, 82. [Google Scholar] [CrossRef] [PubMed]
- Rossini, M.; Cogliati, S.; Meroni, M.; Migliavacca, M.; Galvagno, M.; Busetto, L.; Cremonese, E.; Julitta, T.; Siniscalco, C.; Morra di Cella, U.; et al. Remote sensing-based estimation of gross primary production in a subalpine grassland. Biogeosciences 2012, 9, 2565–2584. [Google Scholar] [CrossRef] [Green Version]
- Rossini, M.; Migliavacca, M.; Galvagno, M.; Meroni, M.; Cogliati, S.; Cremonese, E.; Fava, F.; Gitelson, A.; Julitta, T.; Morra di Cella, U.; et al. Remote estimation of grassland gross primary production during extreme meteorological seasons. Int. J. Appl. Earth Obs. Geoinform. 2014, 29, 1–10. [Google Scholar] [CrossRef]
- Drolet, G.; Wade, T.; Nichol, C.J.; MacLellan, C.; Levula, J.; Porcar-Castell, A.; Nikinmaa, E.; Vesala, T. A temperature-controlled spectrometer system for continuous and unattended measurements of canopy spectral radiance and reflectance. Int. J. Remote Sens. 2014, 35, 1769–1785. [Google Scholar] [CrossRef]
- Ač, A.; Malenovský, Z.; Olejníčková, J.; Gallé, A.; Rascher, U.; Mohammed, G. Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress. Remote Sens. Environ. 2015, 168, 420–436. [Google Scholar] [CrossRef]
- Pedrós, R.; Goulas, Y.; Jacquemoud, S.; Louis, J.; Moya, I. FluorMODleaf: A new leaf fluorescence emission model based on the PROSPECT model. Remote Sens. Environ. 2010, 114, 155–167. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Pedrós, R.; Verhoef, W.; Berger, M. FluorMODgui V3.0: A graphic user interface for the spectral simulation of leaf and canopy chlorophyll fluorescence. Comput. Geosci. 2006, 32, 577–591. [Google Scholar] [CrossRef]
- Damm, A.; Erler, A.; Hillen, W.; Meroni, M.; Schaepman, M.E.; Verhoef, W.; Rascher, U. Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence. Remote Sens. Environ. 2011, 115, 1882–1892. [Google Scholar] [CrossRef]
- Sanders, A.F.J.; de Haan, J.F. Retrieval of aerosol parameters from the oxygen A band in the presence of chlorophyll fluorescence. Atmos. Meas. Tech. 2013, 6, 2725–2740. [Google Scholar] [CrossRef]
- Meroni, M.; Busetto, L.; Colombo, R.; Guanter, L.; Moreno, J.; Verhoef, W. Performance of Spectral Fitting Methods for vegetation fluorescence quantification. Remote Sens. Environ. 2010, 114, 363–374. [Google Scholar] [CrossRef]
- Meroni, M.; Rossini, M.; Guanter, L.; Alonso, L.; Rascher, U.; Colombo, R.; Moreno, J. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens. Environ. 2009, 113, 2037–2051. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Hu, J.C.; Liu, L.Y.; Liu, X.J. Assessing uncertainties of sun-induced chlorophyll fluorescence retrieval using FluorMOD model. J. Remote Sens. 2015, 594–608. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinform. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Köhler, P.; Guanter, L.; Joiner, J. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmos. Meas. Tech. Discuss. 2014, 7, 12173–12217. [Google Scholar] [CrossRef]
Input Parameter of FluorMOD | Parameter Value |
---|---|
The concentration of chlorophyll a + b (Cab, μg/cm2) | 10, 30, 50, 70 |
leaf area index (LAI) | 4 |
Input Parameter of FluorMOD | Parameter Value |
---|---|
The concentration of chlorophyll a + b (Cab, μg/cm2) | 40 |
leaf area index (LAI) | 0, 1, 2, 3, 4 |
λin | λleft | λright | Degree of Polynomial (r, f) | |
---|---|---|---|---|
FLD | 760.519 | 757.282, 755.121, 753.319 | ||
3FLD | 760.519 | 756.201, 751.877, 750.072 | 765.189, 769.135, 771.284 | |
SFM | 760.519 | 756.201, 754.040, 752.237 | 771.284, 773.074, 775.220 | 1, 1 |
λin | λleft | λright | Degree of Polynomial (r, f) | |
---|---|---|---|---|
FLD | 687.276 | 684.321, 682.102, 680.251 | ||
3FLD | 687.276 | 684.321, 682.442, 680.251 | 690.229, 692.441, 694.652 | |
SFM | 687.276 | 685.06, 681.362, 679.141 | 690.229, 694.283, 696.124 | 2, 1 |
λin | λleft | λright | Polynomial Degree (r, f) | |
---|---|---|---|---|
FLD | 760.519 | 759.081 | ||
3FLD | 760.519 | 754.040 | 767.342 | |
SFM | 760.519 | 758.721 | 768.776 | 1, 1 |
λin | λleft | λright | Polynomial Degree (r, f) | |
---|---|---|---|---|
FLD | 687.276 | 686.538 | ||
3FLD | 687.276 | 686.538 | 688.015 | |
SFM | 687.276 | 683.581 | 691.704 | 2, 1 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Liu, Z.; Xu, S.; Zhang, W.; Wu, J. An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies. Sensors 2016, 16, 775. https://doi.org/10.3390/s16060775
Zhou X, Liu Z, Xu S, Zhang W, Wu J. An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies. Sensors. 2016; 16(6):775. https://doi.org/10.3390/s16060775
Chicago/Turabian StyleZhou, Xijia, Zhigang Liu, Shan Xu, Weiwei Zhang, and Jun Wu. 2016. "An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies" Sensors 16, no. 6: 775. https://doi.org/10.3390/s16060775
APA StyleZhou, X., Liu, Z., Xu, S., Zhang, W., & Wu, J. (2016). An Automated Comparative Observation System for Sun-Induced Chlorophyll Fluorescence of Vegetation Canopies. Sensors, 16(6), 775. https://doi.org/10.3390/s16060775