Homogeneous Biosensing Based on Magnetic Particle Labels
Abstract
:1. Introduction
2. Magnetic Detection Methods
2.1. Magnetic Permeability Measurements
2.2. Detecting Variations of Hydrodynamic Properties of Magnetic Particle Labels
2.2.1. Magnetorelaxation Measurements
2.2.2. Dynamic Agitation by Linear AC Magnetic Fields
Frequency Sweep AC Susceptibility Measurements
Mixed-Frequency AC Susceptibility Measurements
Phase Lag AC Susceptibility Measurements
2.2.3. Dynamic Agitation by Rotating Magnetic Fields
2.3. Nuclear Magnetic Resonance Measurements
3. Optical Detection Methods
3.1. Detection by Clustering of Intrinsically Optically Isotropic Magnetic Particles
3.1.1. Sandwich Assays on Magnetically Rotated Particle Clusters
3.1.2. Particle Clustering Mediated by Analyte Molecule Binding
Detection of Magnetically Accelerated Particle Dimer Formation
Magnetically Rotated Particle Chain Detection
Scattering Detection of Particle Cluster Magnetorotation
Detection of Bead Assembly Magnetorotation
Optomagnetic Detection Incorporating Blu-ray Optics
Naked Eye Detection of Particle Clusters
3.2. Detection by Intrinsically Optically Anisotropic Magnetic Labels
3.2.1. Magneto-Optical Detection of Magnetic Particle Labels
3.2.2. Hemispherically Coated Spherical Particle Labels
3.2.3. Magnetic Labels with Optical Shape Anisotropy
Measurement Principle
Ni Nanorod Protein Binding Results
Noble Metal Coated Co Nanorod Protein Binding Results
4. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
AFP | Alpha fetoprotein |
ATP | Adenosine triphosphate |
BSA | bovine serum albumin |
CDA | Chaotrope-driven aggregation |
CEA | Carcino-embryonic antigen |
ConA | Concanavalin A |
CRP | C-reactive protein |
DLS | Dynamic light scattering |
E. coli | Escherichia coli |
ELISA | Enzyme-linked immunosorbent assay |
FFT | Fast Fourier transformation |
GLFS | Gold lateral flow strip |
H-FABP | heart-type fatty acid binding protein |
HIA | Hybridization induced aggregation |
HRTEM | High resolution tunneling electron microscopy |
IGF-1 | Insulin-like growth factor 1 |
IgG | Immunoglobulin G |
IgM | Immunoglobulin M |
IMA | Immunomagnetic aggregation |
IMB | Immunomagnetic bead |
IMR | Immunomagnetic reduction |
LAMP | Loop-mediated isothermal amplification |
LoD | Limit of detection |
MARIA | Magnetic relaxation immunoassay |
MPI | Magnetic particle imaging |
MRI | Magnetic resonance imaging |
MRSw | Magnetic relaxation switch |
MRX | Magnetorelaxation |
NMR | Nuclear magnetic resonance |
NP | Nanoparticle |
PAB | pipette, aggregate and blot |
PCR: | Polymerase chain reaction |
PoC | Point of care |
PSA | Prostate specific antigen |
PVP | Polyvinylpyrrolidone |
RCA | Rolling circle amplification |
RMF | Rotating magnetic field |
sHER2 | soluble domain of the human epidermal growth factor receptor 2 |
SPR | Surface plasmon resonance |
SQUID | Superconducting quantum interference device |
STEM-EDX | Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy |
TEM | Tunneling electron microscopy |
VSM | Vibrating sample magnetometry |
References
- Gupta, S.; Venkatesh, A.; Ray, S.; Srivastava, S. Challenges and prospects for biomarker research: A current perspective from the developing world. Biochim. Biophys. Acta 2014, 1844, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.-Z.; Huang, H.; Wu, C.H.; Jung, M.; Dritschilo, A.; Riegel, A.T.; Wellstein, A. Omics-based molecular target and biomarker identification. Methods Mol. Biol. 2011, 719, 547–571. [Google Scholar] [PubMed]
- Hampel, H.; Frank, R.; Broich, K.; Teipel, S.J.; Katz, R.G.; Hardy, J.; Herholz, K.; Bokde, A.L.W.; Jessen, F.; Hoessler, Y.C.; et al. Biomarkers for Alzheimer’s disease: Academic, industry and regulatory perspectives. Nat. Rev. Drug Discov. 2010, 9, 560–574. [Google Scholar] [CrossRef] [PubMed]
- Blennow, K.; Zetterberg, H. The past and the future of Alzheimer’s disease CSF biomarkers—A journey toward validated biochemical tests covering the whole spectrum of molecular events. Front. Neurosci. 2015, 9, 270. [Google Scholar] [CrossRef] [PubMed]
- Fassett, R.G.; Venuthurupalli, S.K.; Gobe, G.C.; Coombes, J.S.; Cooper, M.A.; Hoy, W.E. Biomarkers in chronic kidney disease: A review. Kidney Int. 2011, 80, 806–821. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, G. Diagnostic and prognostic molecular biomarkers for prostate cancer. Histopathology 2012, 60, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.T.; Liu, Y.; Zurita, A.J.; Lin, Y.; Baker-Neblett, K.L.; Martin, A.-M.; Figlin, R.A.; Hutson, T.E.; Sternberg, C.N.; Amado, R.G.; et al. Prognostic or predictive plasma cytokines and angiogenic factors for patients treated with pazopanib for metastatic renal-cell cancer: A retrospective analysis of phase 2 and phase 3 trials. Lancet Oncol. 2012, 13, 827–837. [Google Scholar] [CrossRef]
- Shen, Q.; Fan, J.; Yang, X.-R.; Tan, Y.; Zhao, W.; Xu, Y.; Wang, N.; Niu, Y.; Wu, Z.; Zhou, J.; et al. Serum DKK1 as a protein biomarker for the diagnosis of hepatocellular carcinoma: A large-scale, multicentre study. Lancet Oncol. 2012, 13, 817–826. [Google Scholar] [CrossRef]
- Polanska, H.; Raudenska, M.; Gumulec, J.; Sztalmachova, M.; Adam, V.; Kizek, R.; Masarik, M. Clinical significance of head and neck squamous cell cancer biomarkers. Oral Oncol. 2014, 50, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.W.; Jimenez, C.R.; Boven, E. Breast cancer classification by proteomic technologies: Current state of knowledge. Cancer Treat. Rev. 2014, 40, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Watkins, R.A.; Evans-Molina, C.; Blum, J.S.; DiMeglio, L.A. Established and emerging biomarkers for the prediction of type 1 diabetes: A systematic review. Transl. Res. 2014, 164, 110–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.-Y.; Yu, T.-Y.; Wei, J.-N.; Hung, C.-S.; Lin, M.-S.; Liao, Y.-J.; Pei, D.; Su, C.-C.; Lu, K.-C.; Liu, P.-H.; et al. Plasma apelin: A novel biomarker for predicting diabetes. Clin. Chim. Acta 2014, 435, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Liberal, R.; Grant, C.R.; Longhi, M.S.; Mieli-Vergani, G.; Vergani, D. Diagnostic criteria of autoimmune hepatitis. Autoimmun. Rev. 2014, 13, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Bowlus, C.L.; Gershwin, M.E. The diagnosis of primary biliary cirrhosis. Autoimmun. Rev. 2014, 13, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Qin, N.; Yang, F.; Li, A.; Prifti, E.; Chen, Y.; Shao, L.; Guo, J.; Le Chatelier, E.; Yao, J.; Wu, L.; et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014, 513, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Weiner, J.; Kaufmann, S.H.E. Recent advances towards tuberculosis control: Vaccines and biomarkers. J. Intern. Med. 2014, 275, 467–480. [Google Scholar] [CrossRef] [PubMed]
- Pai, M.; Denkinger, C.M.; Kik, S.V.; Rangaka, M.X.; Zwerling, A.; Oxlade, O.; Metcalfe, J.Z.; Cattamanchi, A.; Dowdy, D.W.; Dheda, K.; et al. Gamma Interferon Release Assays for Detection of Mycobacterium tuberculosis Infection. Clin. Microbiol. Rev. 2014, 27, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Chegou, N.N.; Heyckendorf, J.; Walzl, G.; Lange, C.; Ruhwald, M. Beyond the IFN-horizon: Biomarkers for immunodiagnosis of infection with Mycobacterium tuberculosis. Eur. Respir. J. 2014, 43, 1472–1486. [Google Scholar] [CrossRef] [PubMed]
- Signorelli, S.; Fiore, V.; Malaponte, G. Inflammation and peripheral arterial disease: The value of circulating biomarkers (Review). Int. J. Mol. Med. 2014, 33, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Pearson, T.A. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the centers for disease control and prevention and the American heart association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.; Ng, L.L. Biomarkers in acute myocardial infarction. BMC Med. 2010, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Loonen, A.J.M.; de Jager, C.P.C.; Tosserams, J.; Kusters, R.; Hilbink, M.; Wever, P.C.; van den Brule, A.J.C.; Inacio, J. Biomarkers and Molecular Analysis to Improve Bloodstream Infection Diagnostics in an Emergency Care Unit. PLoS ONE 2014, 9, e87315. [Google Scholar] [CrossRef] [PubMed]
- Bloos, F.; Reinhart, K. Rapid diagnosis of sepsis. Virulence 2013, 5, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Majewski, I.J.; Bernards, R. Taming the dragon: Genomic biomarkers to individualize the treatment of cancer. Nat. Med. 2011. [Google Scholar] [CrossRef] [PubMed]
- Pavlou, M.P.; Diamandis, E.P.; Blasutig, I.M. The Long Journey of Cancer Biomarkers from the Bench to the Clinic. Clin. Chem. 2013, 59, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Undén, J.; Ingebrigtsen, T.; Romner, B. Scandinavian guidelines for initial management of minimal, mild and moderate head injuries in adults: An evidence and consensus-based update. BMC Med. 2013, 11, 50. [Google Scholar] [CrossRef] [PubMed]
- Maes, E.; Mertens, I.; Valkenborg, D.; Pauwels, P.; Rolfo, C.; Baggerman, G. Proteomics in cancer research: Are we ready for clinical practice? Crit. Rev. Oncol. Hematol. 2015, 96, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Dai, Q.; Austin, L.; Coutts, J.; Knowles, G.; Zou, J.; Chen, H.; Huo, Q. A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc. 2008, 130, 2780–2782. [Google Scholar] [CrossRef] [PubMed]
- Yager, P.; Domingo, G.J.; Gerdes, J. Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 2008, 10, 107–144. [Google Scholar] [CrossRef] [PubMed]
- Diamandis, E.P.; Christopoulos, T.K. Immunoassay; Academic Press: San Diego, CA, USA, 1996. [Google Scholar]
- Northrup, S.H.; Erickson, H.P. Kinetics of protein-protein association explained by Brownian dynamics computer simulation. Proc. Natl. Acad. Sci. USA 1992, 89, 3338–3342. [Google Scholar] [CrossRef] [PubMed]
- Kusnezow, W.; Syagailo, Y.V.; Rüffer, S.; Klenin, K.; Sebald, W.; Hoheisel, J.D.; Gauer, C.; Goychuk, I. Kinetics of antigen binding to antibody microspots: Strong limitation by mass transport to the surface. Proteomics 2006, 6, 794–803. [Google Scholar] [CrossRef] [PubMed]
- Jameson, D.M.; Ross, J.A. Fluorescence polarization/anisotropy in diagnostics and imaging. Chem. Rev. 2010, 110, 2685–2708. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.S.; Eremin, S.A. Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Anal. Bioanal. Chem. 2008, 391, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Ries, J.; Schwille, P. Fluorescence correlation spectroscopy. BioEssays 2012, 34, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, H.; Huang, X.; Ren, J. Homogeneous immunoassay for the cancer marker alpha-fetoprotein using single wavelength excitation fluorescence cross-correlation spectroscopy and CdSe/ZnS quantum dots and fluorescent dyes as labels. Microchim. Acta 2016, 183, 749–755. [Google Scholar] [CrossRef]
- Kreisig, T.; Hoffmann, R.; Zuchner, T. Homogeneous Fluorescence-Based Immunoassay Detects Antigens Within 90 Seconds. Anal. Chem. 2011, 83, 4281–4287. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.-P. Time-resolved Fluorescence Resonance Energy Transfer Assay for Point-of-Care Testing of Urinary Albumin. Clin. Chem. 2003, 49, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Stobiecka, M.; Chałupa, A. Biosensors based on molecular beacons. Chem. Pap. 2015, 69, 62–76. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, R.; Shi, M.; Wu, C.; Fang, X.; Li, Y.; Li, J.; Tan, W. Rationally designed molecular beacons for bioanalytical and biomedical applications. Chem. Soc. Rev. 2015, 44, 3036–3055. [Google Scholar] [CrossRef] [PubMed]
- Wienken, C.J.; Baaske, P.; Rothbauer, U.; Braun, D.; Duhr, S. Protein-binding assays in biological liquids using microscale thermophoresis. Nat. Commun. 2010, 1, 100. [Google Scholar] [CrossRef] [PubMed]
- Seidel, S.A.I.; Markwardt, N.A.; Lanzmich, S.A.; Braun, D. Thermophoresis in Nanoliter Droplets to Quantify Aptamer Binding. Angew. Chem. Int. Ed. 2014, 53, 7948–7951. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, N.; Ma, X.; Li, X.; Ma, J.; Li, Y.; Zhou, Z.; Gao, Z. Highly specific detection of thrombin using an aptamer-based suspension array and the interaction analysis via microscale thermophoresis. Analyst 2015, 140, 2762–2770. [Google Scholar] [CrossRef] [PubMed]
- Lippok, S.; Seidel, S.A.I.; Duhr, S.; Uhland, K.; Holthoff, H.-P.; Jenne, D.; Braun, D. Direct Detection of Antibody Concentration and Affinity in Human Serum Using Microscale Thermophoresis. Anal. Chem. 2012, 84, 3523–3530. [Google Scholar] [CrossRef] [PubMed]
- Lea, W.A.; Simeonov, A. Fluorescence polarization assays in small molecule screening. Expert Opin. Drug Discov. 2010, 6, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, L.-J.; Jiang, J.-H. Surface-Enhanced Raman Spectroscopy-Based, Homogeneous, Multiplexed Immunoassay with Antibody-Fragments-Decorated Gold Nanoparticles. Anal. Chem. 2013, 85, 9213–9220. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, L.; Arenal, R.; Mannini, B.; Chiti, F.; Pini, R.; Matteini, P.; Alvarez-Puebla, R.A. SERS Detection of Amyloid Oligomers on Metallorganic-Decorated Plasmonic Beads. ACS Appl. Mater. Interfaces 2015, 7, 9420–9428. [Google Scholar] [CrossRef] [PubMed]
- Hutter, E.; Maysinger, D. Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends Pharmacol. Sci. 2013, 34, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lu, Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat. Protoc. 2006, 1, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Homogeneous assays using aptamers. Analyst 2011, 136, 257–274. [Google Scholar] [CrossRef] [PubMed]
- Vilela, D.; González, M.C.; Escarpa, A. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review. Anal. Chim. Acta 2012, 751, 24–43. [Google Scholar] [CrossRef] [PubMed]
- Hao, R.; Xing, R.; Xu, Z.; Hou, Y.; Gao, S.; Sun, S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 2010, 22, 2729–2742. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Gu, H.; Xu, B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 2009, 42, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef] [PubMed]
- Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2003, 36, R167–R181. [Google Scholar] [CrossRef]
- Shubayev, V.I.; Pisanic, T.R.; Jin, S. Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev. 2009, 61, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Carregal-Romero, S.; Casula, M.F.; Gutiérrez, L.; Morales, M.P.; Böhm, I.B.; Heverhagen, J.T.; Prosperi, D.; Parak, W.J. Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 2012, 41, 4306. [Google Scholar] [CrossRef] [PubMed]
- Na, H.B.; Song, I.C.; Hyeon, T. Inorganic Nanoparticles for MRI Contrast Agents. Adv. Mater. 2009, 21, 2133–2148. [Google Scholar] [CrossRef]
- Xiao, L.; Li, J.; Brougham, D.F.; Fox, E.K.; Feliu, N.; Bushmelev, A.; Schmidt, A.; Mertens, N.; Kiessling, F.; Valldor, M.; et al. Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging. ACS Nano 2011, 5, 6315–6324. [Google Scholar] [CrossRef] [PubMed]
- Gleich, B.; Weizenecker, J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 2005, 435, 1214–1217. [Google Scholar] [CrossRef] [PubMed]
- Pankhurst, Q.A.; Thanh, N.T.K.; Jones, S.K.; Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2009, 42, 224001. [Google Scholar] [CrossRef]
- Périgo, E.A.; Hemery, G.; Sandre, O.; Ortega, D.; Garaio, E.; Plazaola, F.; Teran, F.J. Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2015, 2, 41302. [Google Scholar] [CrossRef]
- Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S.G.; Nel, A.E.; Tamanoi, F.; Zink, J.I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008, 2, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Tietze, R.; Zaloga, J.; Unterweger, H.; Lyer, S.; Friedrich, R.P.; Janko, C.; Pöttler, M.; Dürr, S.; Alexiou, C. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. 2015, 468, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Gijs, M.A.M. Magnetic bead handling on-chip: New opportunities for analytical applications. Microfluid. Nanofluid. 2004, 1, 22–40. [Google Scholar] [CrossRef]
- Lewin, M.; Carlesso, N.; Tung, C.H.; Tang, X.W.; Cory, D.; Scadden, D.T.; Weissleder, R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 2000, 18, 410–414. [Google Scholar] [PubMed]
- Rocha-Santos, T.A. Sensors and biosensors based on magnetic nanoparticles. Trends Anal. Chem. 2014, 62, 28–36. [Google Scholar] [CrossRef]
- Xie, L.; Jiang, R.; Zhu, F.; Liu, H.; Ouyang, G. Application of functionalized magnetic nanoparticles in sample preparation. Anal. Bioanal. Chem. 2014, 406, 377–399. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Zhang, P.; Cheng, Y.; Xie, S.; Zhang, S.; Ye, X. Homogeneous agglutination assay based on micro-chip sheathless flow cytometry. Biomicrofluidics 2015, 9, 66501. [Google Scholar] [CrossRef] [PubMed]
- Hahn, Y.K.; Jin, Z.; Kang, J.H.; Oh, E.; Han, M.-K.; Kim, H.-S.; Jang, J.-T.; Lee, J.-H.; Cheon, J.; Kim, S.H.; et al. Magnetophoretic immunoassay of allergen-specific IgE in an enhanced magnetic field gradient. Anal. Chem. 2007, 79, 2214–2220. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, C.; Gazeau, F.; Bacri, J.-C. Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur. Biophys. J. 2002, 31, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Zhang, Z.; Dong, Y.; Wang, Z. Chemiluminescence resonance energy transfer imaging on magnetic particles for single-nucleotide polymorphism detection based on ligation chain reaction. Biosens. Bioelectron. 2014, 65C, 139–144. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Huang, M.; Wang, D.; Zhang, Z.; Li, G. Magnetic separation techniques in sample preparation for biological analysis: A review. J. Pharm. Biomed. Anal. 2014, 101, 84–101. [Google Scholar] [CrossRef] [PubMed]
- Gubin, S.P.; Koksharov, Y.A.; Khomutov, G.B.; Yurkov, G.Y. Magnetic nanoparticles: preparation, structure and properties. Russ. Chem. Rev. 2005, 74, 489–520. [Google Scholar] [CrossRef]
- Hyeon, T. Chemical synthesis of magnetic nanoparticles. Chem. Commun. 2003, 8, 927–934. [Google Scholar] [CrossRef]
- Lu, A.-H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244. [Google Scholar] [CrossRef] [PubMed]
- Tartaj, P.; Morales, M.D.P.; Veintemillas-Verdaguer, S.; González-Carreno, T.; Serna, C.J. The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 2003, 36, R182–R197. [Google Scholar] [CrossRef]
- Reddy, L.H.; Arias, J.L.; Nicolas, J.; Couvreur, P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012, 112, 5818–5878. [Google Scholar] [CrossRef] [PubMed]
- Palui, G.; Aldeek, F.; Wang, W.; Mattoussi, H. Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating. Chem. Soc. Rev. 2015, 44, 193–227. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Liu, D. Template-based synthesis of nanorod, nanowire, and nanotube arrays. Adv. Colloid Interface Sci. 2008, 136, 45–64. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.-S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2016, 16, 23501. [Google Scholar] [CrossRef]
- Hola, K.; Markova, Z.; Zoppellaro, G.; Tucek, J.; Zboril, R. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv. 2015, 33, 1162–1176. [Google Scholar] [CrossRef] [PubMed]
- Sapsford, K.E.; Algar, W.R.; Berti, L.; Gemmill, K.B.; Casey, B.J.; Oh, E.; Stewart, M.H.; Medintz, I.L. Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology. Chem. Rev. 2013, 113, 1904–2074. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.A.; Parak, W.J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil. Trans. R. Soc. A 2010, 368, 1333–1383. [Google Scholar] [CrossRef] [PubMed]
- Thanh, N.T.; Green, L.A. Functionalisation of nanoparticles for biomedical applications. Nano Today 2010, 5, 213–230. [Google Scholar] [CrossRef]
- Turcheniuk, K.; Tarasevych, A.V.; Kukhar, V.P.; Boukherroub, R.; Szunerits, S. Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale 2013, 5, 10729. [Google Scholar] [CrossRef] [PubMed]
- Walter, A.; Garofalo, A.; Parat, A.; Martinez, H.; Felder-Flesch, D.; Begin-Colin, S. Functionalization strategies and dendronization of iron oxide nanoparticles. Nanotechnol. Rev. 2015, 4, 581–593. [Google Scholar] [CrossRef]
- Boles, M.A.; Ling, D.; Hyeon, T.; Talapin, D.V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Moros, M.; Pelaz, B.; López-Larrubia, P.; García-Martin, M.L.; Grazú, V.; de la Fuente, J.M. Engineering biofunctional magnetic nanoparticles for biotechnological applications. Nanoscale 2010, 2, 1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besse, P.-A.; Boero, G.; Demierre, M.; Pott, V.; Popovic, R. Detection of a single magnetic microbead using a miniaturized silicon Hall sensor. Appl. Phys. Lett. 2002, 80, 4199. [Google Scholar] [CrossRef]
- Aytur, T.; Foley, J.; Anwar, M.; Boser, B.; Harris, E.; Beatty, P.R. A novel magnetic bead bioassay platform using a microchip-based sensor for infectious disease diagnosis. J. Immunol. Methods 2006, 314, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Mihajlović, G.; Xiong, P.; von Molnár, S.; Ohtani, K.; Ohno, H.; Field, M.; Sullivan, G.J. Detection of single magnetic bead for biological applications using an InAs quantum-well micro-Hall sensor. Appl. Phys. Lett. 2005, 87, 112502. [Google Scholar] [CrossRef]
- Baselt, D.R.; Lee, G.U.; Natesan, M.; Metzger, S.W.; Sheehan, P.E.; Colton, R.J. A biosensor based on magnetoresistance technology. Biosens. Bioelectron. 1998, 13, 731–739. [Google Scholar] [CrossRef]
- Weddemann, A.; Albon, C.; Auge, A.; Wittbracht, F.; Hedwig, P.; Akemeier, D.; Rott, K.; Meissner, D.; Jutzi, P.; Hütten, A. How to design magneto-based total analysis systems for biomedical applications. Biosens. Bioelectron. 2010, 26, 1152–1163. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.X.; Bae, S.-Y.; Li, G.; Sun, S.; White, R.L.; Kemp, J.T.; Webb, C.D. Towards a magnetic microarray for sensitive diagnostics. J. Magn. Magn. Mater. 2005, 293, 731–736. [Google Scholar] [CrossRef]
- Miller, M.M.; Sheehan, P.E.; Edelstein, R.L.; Tamanaha, C.R.; Zhong, L.; Bounnak, S.; Whitman, L.J.; Colton, R.J. A DNA array sensor utilizing magnetic microbeads and magnetoelectronic detection. J. Magn. Magn. Mater. 2001, 225, 138–144. [Google Scholar] [CrossRef]
- Llandro, J.; Palfreyman, J.J.; Ionescu, A.; Barnes, C.H.W. Magnetic biosensor technologies for medical applications: A review. Med. Biol. Eng. Comput. 2010, 48, 977–998. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.X.; Li, G. Advances in Giant Magnetoresistance Biosensors With Magnetic Nanoparticle Tags: Review and Outlook. IEEE Trans. Magn. 2008, 44, 1687–1702. [Google Scholar] [CrossRef]
- Enpuku, K.; Minotani, T.; Gima, T.; Kuroki, Y.; Itoh, Y.; Yamashita, M.; Katakura, Y.; Kuhara, S. Detection of Magnetic Nanoparticles with Superconducting Quantum Interference Device (SQUID) Magnetometer and Application to Immunoassays. Jpn. J. Appl. Phys. 1999, 38, L1102–L1105. [Google Scholar] [CrossRef]
- Enpuku, K.; Soejima, K.; Nishimoto, T.; Tokumitsu, H.; Kuma, H.; Hamasaki, N.; Yoshinaga, K. Liquid phase immunoassay utilizing magnetic marker and high Tc superconducting quantum interference device. J. Appl. Phys. 2006, 100, 54701. [Google Scholar] [CrossRef]
- Tsai, H.Y.; Hsu, C.F.; Chiu, I.W.; Fuh, C.B. Detection of C-reactive protein based on immunoassay using antibody-conjugated magnetic nanoparticles. Anal. Chem. 2007, 79, 8416–8419. [Google Scholar] [CrossRef] [PubMed]
- Kriz, C.B.; Rådevik, K.; Kriz, D. Magnetic permeability measurements in bioanalysis and biosensors. Anal. Chem. 1996, 68, 1966–1970. [Google Scholar] [CrossRef] [PubMed]
- Ibraimi, F.; Kriz, K.; Merin, H.; Kriz, D. Magnetic permeability based diagnostic test for the determination of the canine C-reactive protein concentration in undiluted whole blood. J. Magn. Magn. Mater. 2009, 321, 1632–1634. [Google Scholar] [CrossRef]
- Kriz, K.; Ibraimi, F.; Lu, M.; Hansson, L.-O.; Kriz, D. Detection of C-reactive protein utilizing magnetic permeability detection based immunoassays. Anal. Chem. 2005, 77, 5920–5924. [Google Scholar] [CrossRef] [PubMed]
- Ibraimi, F.; Kriz, D.; Lu, M.; Hansson, L.-O.; Kriz, K. Rapid one-step whole blood C-reactive protein magnetic permeability immunoassay with monoclonal antibody conjugated nanoparticles as superparamagnetic labels and enhanced sedimentation. Anal. Bioanal. Chem. 2006, 384, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Ibraimi, F.; Ekberg, B.; Kriz, D.; Danielsson, G.; Bülow, L. Preparation of a portable point-of-care in vitro diagnostic system, for quantification of canine C-reactive protein, based on a magnetic two-site immunoassay. Anal. Bioanal. Chem. 2013, 405, 6001–6007. [Google Scholar] [CrossRef] [PubMed]
- Kriz, K.; Gehrke, J.; Kriz, D. Advancements toward magneto immunoassays. Biosens. Bioelectron. 1998, 13, 817–823. [Google Scholar] [CrossRef]
- Lu, M.; Ibraimi, F.; Kriz, D.; Kriz, K. A combination of magnetic permeability detection with nanometer-scaled superparamagnetic tracer and its application for one-step detection of human urinary albumin in undiluted urine. Biosens. Bioelectron. 2006, 21, 2248–2254. [Google Scholar] [CrossRef] [PubMed]
- Abrahamsson, D.; Kriz, K.; Lu, M.; Kriz, D. A preliminary study on DNA detection based on relative magnetic permeability measurements and histone H1 conjugated superparamagnetic nanoparticles as magnetic tracers. Biosens. Bioelectron. 2004, 19, 1549–1557. [Google Scholar] [CrossRef] [PubMed]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials, 2nd ed.; IEEE/Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Debye, P.J.W. Polar Molecules; The Chemical Catalog Company Inc.: New York, NY, USA, 1929. [Google Scholar]
- Kötitz, R.; Weitschies, W.; Trahms, L.; Brewer, W.; Semmler, W. Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles. J. Magn. Magn. Mater. 1999, 194, 62–68. [Google Scholar] [CrossRef]
- Coey, J.M.D. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2009. [Google Scholar]
- Fannin, P.C.; Charles, S.W. The study of a ferrofluid exhibiting both Brownian and Neel relaxation. J. Phys. D Appl. Phys. 1989, 22, 187–191. [Google Scholar] [CrossRef]
- Chemla, Y.R.; Grossman, H.L.; Poon, Y.; McDermott, R.; Stevens, R.; Alper, M.D.; Clarke, J. Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proc. Natl. Acad. Sci. USA 2000, 97, 14268–14272. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Myers, W.R.; Grossman, H.L.; Cho, H.-M.; Chemla, Y.R.; Clarke, J. Magnetic gradiometer based on a high-transition temperature superconducting quantum interference device for improved sensitivity of a biosensor. Appl. Phys. Lett. 2002, 81, 3094. [Google Scholar] [CrossRef]
- Grossman, H.L.; Myers, W.R.; Vreeland, V.J.; Bruehl, R.; Alper, M.D.; Bertozzi, C.R.; Clarke, J. Detection of bacteria in suspension by using a superconducting quantum interference device. Proc. Natl. Acad. Sci. USA 2004, 101, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Weitschies, W.; Kötitz, R.; Bunte, T.; Trahms, L. Determination of relaxing or remanent nanoparticle magnetization provides a novel binding-specific technique for the evaluation of immunoassays. Pharm. Pharmacol. Lett. 1997, 7, 5–8. [Google Scholar]
- Matz, H.; Drung, D.; Hartwig, S.; Groß, H.; Kötitz, R.; Müller, W.; Vass, A.; Weitschies, W.; Trahms, L. A SQUID measurement system for immunoassays. Appl. Supercond. 1998, 6, 577–583. [Google Scholar] [CrossRef]
- Lange, J.; Kötitz, R.; Haller, A.; Trahms, L.; Semmler, W.; Weitschies, W. Magnetorelaxometry—A new binding specific detection method based on magnetic nanoparticles. J. Magn. Magn. Mater. 2002, 252, 381–383. [Google Scholar] [CrossRef]
- Kotitz, R.; Matz, H.; Trahms, L.; Koch, H.; Weitschies, W.; Rheinlander, T.; Semmler, W.; Bunte, T. SQUID based remanence measurements for immunoassays. IEEE Trans. Appl. Supercond. 1997, 7, 3678–3681. [Google Scholar] [CrossRef]
- Eberbeck, D.; Bergemann, C.; Hartwig, S.; Steinhoff, U.; Trahms, L. Binding kinetics of magnetic nanoparticles on latex beads and yeast cells studied by magnetorelaxometry. J. Magn. Magn. Mater. 2005, 289, 435–438. [Google Scholar] [CrossRef]
- Eberbeck, D.; Bergemann, C.; Wiekhorst, F.; Steinhoff, U.; Trahms, L. Quantification of specific bindings of biomolecules by magnetorelaxometry. J. Nanobiotechnol. 2008, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.C.; Yang, S.Y.; Fang, G.L.; Huang, W.H.; Liu, C.H.; Liao, S.H.; Horng, H.E.; Hong, C.-Y. Magnetic relaxation measurement in immunoassay using high-transition-temperature superconducting quantum interference device system. J. Appl. Phys. 2006, 99, 124701. [Google Scholar] [CrossRef]
- Enpuku, K.; Tanaka, T.; Matsuda, T.; Kuma, H.; Hamasaki, N.; Dang, F.; Enomoto, N.; Hojo, J.; Yoshinaga, K.; Ludwig, F.; et al. Liquid Phase Immunoassay Using Magnetic Markers and Superconducting Quantum Interference Device. Jpn. J. Appl. Phys. 2007, 46, 7524–7529. [Google Scholar] [CrossRef]
- Enpuku, K.; Tokumitsu, H.; Sugimoto, Y.; Kuma, H.; Hamasaki, N.; Tsukamoto, A.; Mizoguchi, T.; Kandori, A.; Yoshinaga, K.; Kanzaki, H.; et al. Fast Detection of Biological Targets With Magnetic Marker and SQUID. IEEE Trans. Appl. Supercond. 2009, 19, 844–847. [Google Scholar] [CrossRef]
- Uchida, S.; Higuchi, Y.; Ueoka, Y.; Yoshida, T.; Enpuku, K.; Adachi, S.; Tanabe, K.; Tsukamoto, A.; Kandori, A. Highly Sensitive Liquid-Phase Detection of Biological Targets With Magnetic Markers and High Tc SQUID. IEEE Trans. Appl. Supercond. 2014, 24, 1–5. [Google Scholar] [CrossRef]
- Hofmann, A.; Wenzel, D.; Becher, U.M.; Freitag, D.F.; Klein, A.M.; Eberbeck, D.; Schulte, M.; Zimmermann, K.; Bergemann, C.; Gleich, B.; et al. Combined targeting of lentiviral vectors and positioning of transduced cells by magnetic nanoparticles. Proc. Natl. Acad. Sci. USA 2009, 106, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, F.; Heim, E.; Mäuselein, S.; Eberbeck, D.; Schilling, M. Magnetorelaxometry of magnetic nanoparticles with fluxgate magnetometers for the analysis of biological targets. J. Magn. Magn. Mater. 2005, 293, 690–695. [Google Scholar] [CrossRef]
- Ludwig, F.; Mäuselein, S.; Heim, E.; Schilling, M. Magnetorelaxometry of magnetic nanoparticles in magnetically unshielded environment utilizing a differential fluxgate arrangement. Rev. Sci. Instrum. 2005, 76, 106102. [Google Scholar] [CrossRef]
- Heim, E.; Ludwig, F.; Schilling, M. Binding assays with streptavidin-functionalized superparamagnetic nanoparticles and biotinylated analytes using fluxgate magnetorelaxometry. J. Magn. Magn. Mater. 2009, 321, 1628–1631. [Google Scholar] [CrossRef]
- Connolly, J.; St Pierre, T.G. Proposed biosensors based on time-dependent properties of magnetic fluids. J. Magn. Magn. Mater. 2001, 225, 156–160. [Google Scholar] [CrossRef]
- Dieckhoff, J.H.; Yoshida, T.; Enpuku, K.; Schilling, M.; Ludwig, F. Homogeneous Bioassays Based on the Manipulation of Magnetic Nanoparticles by Rotating and Alternating Magnetic Fields—A Comparison. IEEE Trans. Magn. 2012, 48, 3792–3795. [Google Scholar] [CrossRef]
- Astalan, A.P.; Ahrentorp, F.; Johansson, C.; Larsson, K.; Krozer, A. Biomolecular reactions studied using changes in Brownian rotation dynamics of magnetic particles. Biosens. Bioelectron. 2004, 19, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.H.; Hoffmann, A.; Bader, S.D.; Liu, C.; Kay, B.; Makowski, L.; Chen, L. Biological sensors based on Brownian relaxation of magnetic nanoparticles. Appl. Phys. Lett. 2004, 85, 2971. [Google Scholar] [CrossRef]
- Chung, S.-H.; Hoffmann, A.; Guslienko, K.; Bader, S.D.; Liu, C.; Kay, B.; Makowski, L.; Chen, L. Biological sensing with magnetic nanoparticles using Brownian relaxation (invited). J. Appl. Phys. 2005, 97, 10R101. [Google Scholar] [CrossRef]
- Bao, Y.; Pakhomov, A.B.; Krishnan, K.M. Brownian magnetic relaxation of water-based cobalt nanoparticle ferrofluids. J. Appl. Phys. 2006, 99, 08H107. [Google Scholar] [CrossRef]
- Fornara, A.; Johansson, P.; Petersson, K.; Gustafsson, S.; Qin, J.; Olsson, E.; Ilver, D.; Krozer, A.; Muhammed, M.; Johansson, C. Tailored magnetic nanoparticles for direct and sensitive detection of biomolecules in biological samples. Nano Lett. 2008, 8, 3423–3428. [Google Scholar] [CrossRef] [PubMed]
- Enpuku, K.; Tamai, Y.; Mitake, T.; Matsuo, M.; Tsukamoto, A.; Mizoguchi, T.; Kandori, A. Liquid Phase Immunoassay Using AC Susceptibility Measurement of Magnetic Markers. Appl. Phys. Express 2009, 2, 37001. [Google Scholar] [CrossRef]
- Enpuku, K.; Tanaka, T.; Tamai, Y.; Matsuo, M. AC susceptibility of magnetic markers in suspension for liquid phase immunoassay. J. Magn. Magn. Mater. 2009, 321, 1621–1624. [Google Scholar] [CrossRef]
- Enpuku, K.; Tamai, Y.; Mitake, T.; Yoshida, T.; Matsuo, M. AC susceptibility measurement of magnetic markers in suspension for liquid phase immunoassay. J. Appl. Phys. 2010, 108, 34701. [Google Scholar] [CrossRef]
- Strömberg, M.; Göransson, J.; Gunnarsson, K.; Nilsson, M.; Svedlindh, P.; Strømme, M. Sensitive molecular diagnostics using volume-amplified magnetic nanobeads. Nano Lett. 2008, 8, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Strömberg, M.; Gómez de la Torre, T.Z.; Göransson, J.; Gunnarsson, K.; Nilsson, M.; Svedlindh, P.; Strømme, M. Multiplex detection of DNA sequences using the volume-amplified magnetic nanobead detection assay. Anal. Chem. 2009, 81, 3398–3406. [Google Scholar] [CrossRef] [PubMed]
- Gómez de la Torre, T.Z.; Mezger, A.; Herthnek, D.; Johansson, C.; Svedlindh, P.; Nilsson, M.; Strømme, M. Detection of rolling circle amplified DNA molecules using probe-tagged magnetic nanobeads in a portable AC susceptometer. Biosens. Bioelectron. 2011, 29, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Gómez de la Torre, T.Z.; Ke, R.; Mezger, A.; Svedlindh, P.; Strømme, M.; Nilsson, M. Sensitive detection of spores using volume-amplified magnetic nanobeads. Small 2012, 8, 2174–2177. [Google Scholar] [CrossRef] [PubMed]
- Strömberg, M.; Gómez de la Torre, T.Z.; Nilsson, M.; Svedlindh, P.; Strømme, M. A magnetic nanobead-based bioassay provides sensitive detection of single- and biplex bacterial DNA using a portable AC susceptometer. Biotechnol. J. 2014, 9, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Harrah, T.; Goldberg, E.B.; Guertin, R.P.; Sonkusale, S. Multiplexed sensing based on Brownian relaxation of magnetic nanoparticles using a compact AC susceptometer. Nanotechnology 2011, 22, 85501. [Google Scholar] [CrossRef] [PubMed]
- Oisjöen, F.; Schneiderman, J.F.; Astalan, A.P.; Kalabukhov, A.; Johansson, C.; Winkler, D. A new approach for bioassays based on frequency- and time-domain measurements of magnetic nanoparticles. Biosens. Bioelectron. 2010, 25, 1008–1013. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.-Y.; Wu, C.C.; Chiu, Y.C.; Yang, S.Y.; Horng, H.E.; Yang, H.C. Magnetic susceptibility reduction method for magnetically labeled immunoassay. Appl. Phys. Lett. 2006, 88, 212512. [Google Scholar] [CrossRef]
- Hong, C.-Y.; Chen, W.S.; Jian, Z.F.; Yang, S.Y.; Horng, H.E.; Yang, L.C.; Yang, H.C. Wash-free immunomagnetic detection for serum through magnetic susceptibility reduction. Appl. Phys. Lett. 2007, 90, 74105. [Google Scholar] [CrossRef]
- Chieh, J.J.; Yang, S.Y.; Jian, Z.F.; Wang, W.C.; Horng, H.E.; Yang, H.C.; Hong, C.-Y. Hyper-high-sensitivity wash-free magnetoreduction assay on biomolecules using high-Tc superconducting quantum interference devices. J. Appl. Phys. 2008, 103, 14703. [Google Scholar] [CrossRef]
- Chieh, J.J.; Yang, S.-Y.; Horng, H.-E.; Yu, C.Y.; Lee, C.L.; Wu, H.L.; Hong, C.-Y.; Yang, H.-C. Immunomagnetic reduction assay using high-Tc superconducting-quantum-interference-device-based magnetosusceptometry. J. Appl. Phys. 2010, 107, 74903. [Google Scholar] [CrossRef]
- Yang, C.C.; Yang, S.Y.; Chen, H.H.; Weng, W.L.; Horng, H.E.; Chieh, J.J.; Hong, C.Y.; Yang, H.C. Effect of molecule-particle binding on the reduction in the mixed-frequency alternating current magnetic susceptibility of magnetic bio-reagents. J. Appl. Phys. 2012, 112, 24704. [Google Scholar] [CrossRef]
- Chang, C.-H.; Lai, Z.-X.; Lin, H.-L.; Yang, C.-C.; Chen, H.-H.; Yang, S.-Y.; Horng, H.-E.; Hong, C.-Y.; Yang, H.-C.; Lin, H.-C. Use of immunomagnetic reduction for C-reactive protein assay in clinical samples. Int. J. Nanomedicine 2012, 7, 4335–4340. [Google Scholar] [PubMed]
- Chen, C.-Y.; Chang, C.-C.; Lin, C.-W. Clinical application of immunomagnetic reduction for quantitative measurement of insulin-like growth factor binding protein-1 in the prediction of pregnant women with preterm premature rupture of membranes. Clin. Chim. Acta 2015, 438, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Chieh, J.-J.; Huang, K.; Chuang, C.; Wei, W.; Dong, J.; Lee, Y. Immunomagnetic Reduction Assay on Desgammacarboxy Prothrombin for Screening of Hepatocellular Carcinoma. IEEE Trans. Biomed. Eng. 2015. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.-W.; Yang, S.-Y.; Hong, Y.-W.; Chieh, J.-J.; Yang, C.-C.; Horng, H.-E.; Wu, C.-C.; Hong, C.-Y.; Yang, H.-C. Feasibility studies for assaying alpha-fetoprotein using antibody-activated magnetic nanoparticles. Int. J. Nanomedicine 2012, 7, 1991–1996. [Google Scholar] [PubMed]
- Yang, C.C.; Huang, K.W.; Yang, S.Y.; Chen, H.H.; Chen, T.C.; Ho, C.S.; Chang, S.F.; Chieh, J.J.; Horng, H.E.; Hong, C.Y.; et al. Development for High-Accuracy In Vitro Assay of Vascular Endothelial Growth Factor Using Nanomagnetically Labeled Immunoassay. J. Nanomater. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Yang, S.Y.; Chieh, J.J.; Yang, C.C.; Liao, S.H.; Chen, H.H.; Horng, H.E.; Yang, H.C.; Hong, C.Y.; Chiu, M.J.; Chen, T.F.; et al. Clinic Applications in Assaying Ultra-Low-Concentration Bio-Markers Using HTS SQUID-Based AC Magnetosusceptometer. IEEE Trans. Appl. Supercond. 2013, 23. [Google Scholar] [CrossRef]
- Yang, C.-C.; Yang, S.-Y.; Chieh, J.-J.; Horng, H.-E.; Hong, C.-Y.; Yang, H.-C.; Chen, K.H.; Shih, B.Y.; Chen, T.-F.; Chiu, M.-J. Biofunctionalized magnetic nanoparticles for specifically detecting biomarkers of Alzheimer’s disease in vitro. ACS Chem. Neurosci. 2011, 2, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Chiu, M.J.; Horng, H.E.; Chieh, J.J.; Liao, S.H.; Chen, C.H.; Shih, B.Y.; Yang, C.C.; Lee, C.L.; Chen, T.F.; Yang, S.Y.; et al. Multi-Channel SQUID-Based Ultra-High-Sensitivity In-Vitro Detections for Bio-Markers of Alzheimer’s Disease Via Immunomagnetic Reduction. IEEE Trans. Appl. Supercond. 2011, 21, 477–480. [Google Scholar] [CrossRef]
- Chiu, M.-J.; Yang, S.-Y.; Horng, H.-E.; Yang, C.-C.; Chen, T.-F.; Chieh, J.-J.; Chen, H.-H.; Chen, T.-C.; Ho, C.-S.; Chang, S.-F.; et al. Combined plasma biomarkers for diagnosing mild cognition impairment and Alzheimer’s disease. ACS Chem. Neurosci. 2013, 4, 1530–1536. [Google Scholar] [CrossRef] [PubMed]
- Tzen, K.-Y.; Yang, S.-Y.; Chen, T.-F.; Cheng, T.-W.; Horng, H.-E.; Wen, H.-P.; Huang, Y.-Y.; Shiue, C.-Y.; Chiu, M.-J. Plasma Aβ but not tau is related to brain PiB retention in early Alzheimer’s disease. ACS Chem. Neurosci. 2014, 5, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Chiu, M.-J.; Chen, Y.-F.; Chen, T.-F.; Yang, S.-Y.; Yang, F.-P.G.; Tseng, T.-W.; Chieh, J.-J.; Chen, J.-C.R.; Tzen, K.-Y.; Hua, M.-S.; et al. Plasma tau as a window to the brain-negative associations with brain volume and memory function in mild cognitive impairment and early Alzheimer’s disease. Hum. Brain Mapp. 2014, 35, 3132–3142. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Hwu, Y.-M.; Chen, C.-P.; Chang, C.-C. Quantitative analysis of total β-subunit of human chorionic gonadotropin concentration in urine by immunomagnetic reduction to assist in the diagnosis of ectopic pregnancy. Int. J. Nanomedicine 2015, 10, 2475–2483. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Chieh, J.J.; Wang, W.C.; Yu, C.Y.; Hing, N.S.; Horng, H.E.; Hong, C.-Y.; Yang, H.C.; Chang, C.F.; Lin, H.Y. Magnetic nanoparticles for high-sensitivity detection on nucleic acids via superconducting-quantum-interference-device-based immunomagnetic reduction assay. J. Magn. Magn. Mater. 2011, 323, 681–685. [Google Scholar] [CrossRef]
- Yang, S.Y.; Jian, Z.F.; Chieh, J.J.; Horng, H.E.; Yang, H.C.; Huang, I.J.; Hong, C.-Y. Wash-free, antibody-assisted magnetoreduction assays of orchid viruses. J. Virol. Methods 2008, 149, 334–337. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Chieh, J.J.; Wang, W.C.; Yu, C.Y.; Lan, C.B.; Chen, J.H.; Horng, H.E.; Hong, C.-Y.; Yang, H.C.; Huang, W. Ultra-highly sensitive and wash-free bio-detection of H5N1 virus by immunomagnetic reduction assays. J. Virol. Methods 2008, 153, 250–252. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Wang, W.C.; Lan, C.B.; Chen, C.H.; Chieh, J.J.; Horng, H.E.; Hong, C.-Y.; Yang, H.C.; Tsai, C.P.; Yang, C.Y.; et al. Magnetically enhanced high-specificity virus detection using bio-activated magnetic nanoparticles with antibodies as labeling markers. J. Virol. Methods 2010, 164, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.-H.; Lin, Y.-C.; Ho, C.-S.; Yang, C.-C.; Chang, Y.-T.; Chang, J.-F.; Li, C.-Y.; Cheng, C.-S.; Huang, J.-Y.; Lee, Y.-F.; et al. A Novel Detection Platform for Shrimp White Spot Syndrome Virus Using an ICP11-Dependent Immunomagnetic Reduction (IMR) Assay. PLoS ONE 2015, 10, e0138207. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Ho, C.S.; Lee, C.L.; Shih, B.Y.; Horng, H.E.; Hong, C.-Y.; Yang, H.C.; Chung, Y.H.; Chen, J.C.; Lin, T.C. Immunomagnetic reduction assay on chloramphenicol extracted from shrimp. Food Chem. 2012, 131, 1021–1025. [Google Scholar] [CrossRef]
- Lu, M.W.; Yang, S.Y.; Horng, H.E.; Yang, C.C.; Chieh, J.J.; Hong, Y.W.; Hong, C.Y.; Yang, H.C.; Wu, J.L. Immunomagnetic reduction assay for nervous necrosis virus extracted from groupers. J. Virol. Methods 2012, 181, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Wu, J.L.; Tso, C.H.; Ngou, F.H.; Chou, H.Y.; Nan, F.H.; Horng, H.E.; Lu, M.W. A novel quantitative immunomagnetic reduction assay for Nervous necrosis virus. J. Vet. Diagn. Invest. 2012, 24, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.H.; Yang, H.C.; Horng, H.E.; Chieh, J.J.; Chen, K.L.; Chen, H.H.; Chen, J.Y.; Liu, C.I.; Liu, C.W.; Wang, L.M. Time-dependent phase lag of biofunctionalized magnetic nanoparticles conjugated with biotargets studied with alternating current magnetic susceptometor for liquid phase immunoassays. Appl. Phys. Lett. 2013, 103, 243703. [Google Scholar] [CrossRef]
- Liao, S.-H.; Chen, J.-H.; Su, Y.-K.; Chen, K.-L.; Horng, H.-E.; Yang, H.-C. Assaying Biomarkers via Real-Time Measurements of the Effective Relaxation Time of Biofunctionalized Magnetic Nanoparticles Associated with Biotargets. J. Nanomater. 2015, 2015, 1–7. [Google Scholar] [CrossRef]
- Tu, L.; Jing, Y.; Li, Y.; Wang, J.-P. Real-time measurement of Brownian relaxation of magnetic nanoparticles by a mixing-frequency method. Appl. Phys. Lett. 2011, 98, 213702. [Google Scholar] [CrossRef]
- Dieckhoff, J.; Schilling, M.; Ludwig, F. Fluxgate based detection of magnetic nanoparticle dynamics in a rotating magnetic field. Appl. Phys. Lett. 2011, 99, 112501. [Google Scholar] [CrossRef]
- Dieckhoff, J.; Lak, A.; Schilling, M.; Ludwig, F. Protein detection with magnetic nanoparticles in a rotating magnetic field. J. Appl. Phys. 2014, 115, 24701. [Google Scholar] [CrossRef]
- Dieckhoff, J.; Schrittwieser, S.; Schotter, J.; Remmer, H.; Schilling, M.; Ludwig, F. Single-core magnetic markers in rotating magnetic field based homogeneous bioassays and the law of mass action. J. Magn. Magn. Mater. 2015, 380, 205–208. [Google Scholar] [CrossRef]
- Demas, V.; Lowery, T.J. Magnetic resonance for in vitro medical diagnostics: Superparamagnetic nanoparticle-based magnetic relaxation switches. New J. Phys. 2011, 13, 25005. [Google Scholar] [CrossRef]
- Haun, J.B.; Yoon, T.-J.; Lee, H.; Weissleder, R. Magnetic nanoparticle biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Koh, I.; Josephson, L. Magnetic nanoparticle sensors. Sensors 2009, 9, 8130–8145. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Shin, T.-H.; Cheon, J.; Weissleder, R. Recent Developments in Magnetic Diagnostic Systems. Chem. Rev. 2015, 115, 10690–10724. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Min, C.; Issadore, D.; Liong, M.; Yoon, T.-J.; Weissleder, R.; Lee, H. Magnetic Nanoparticles and microNMR for Diagnostic Applications. Theranostics 2012, 2, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Issadore, D.; Park, Y.I.; Shao, H.; Min, C.; Lee, K.; Liong, M.; Weissleder, R.; Lee, H. Magnetic sensing technology for molecular analyses. Lab Chip 2014, 14, 2385–2397. [Google Scholar] [CrossRef] [PubMed]
- Ahmadov, T.O.; Joshi, P.; Zhang, J.; Nahan, K.; Caruso, J.A.; Zhang, P. Paramagnetic relaxation based biosensor for selective dopamine detection. Chem. Commun. 2015, 51, 11425–11428. [Google Scholar] [CrossRef] [PubMed]
- Jacques, V.; Dumas, S.; Sun, W.-C.; Troughton, J.S.; Greenfield, M.T.; Caravan, P. High-relaxivity magnetic resonance imaging contrast agents. Part 2. Optimization of inner- and second-sphere relaxivity. Investig. Radiol. 2010, 45, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.Z.; Gutiérrez, L.; del Mercato, L.L.; Herranz, F.; Chubykalo-Fesenko, O.; Veintemillas-Verdaguer, S.; Parak, W.J.; Morales, M.P.; González, J.M.; Hernando, A.; et al. Magnetic Capsules for NMR Imaging: Effect of Magnetic Nanoparticles Spatial Distribution and Aggregation. J. Phys. Chem. C 2011, 115, 6257–6264. [Google Scholar] [CrossRef]
- Min, C.; Shao, H.; Liong, M.; Yoon, T.-J.; Weissleder, R.; Lee, H. Mechanism of magnetic relaxation switching sensing. ACS Nano 2012, 6, 6821–6828. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Sun, E.; Ham, D.; Weissleder, R. Chip-NMR biosensor for detection and molecular analysis of cells. Nat. Med. 2008, 14, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Brooks, R.A. T(2)-shortening by strongly magnetized spheres: A chemical exchange model. Magn. Reson. Med. 2002, 47, 388–391. [Google Scholar] [CrossRef] [PubMed]
- Gillis, P.; Moiny, F.; Brooks, R.A. On T(2)-shortening by strongly magnetized spheres: A partial refocusing model. Magn. Reson. Med. 2002, 47, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Brooks, R.A.; Moiny, F.; Gillis, P. On T2-shortening by weakly magnetized particles: the chemical exchange model. Magn. Reson. Med. 2001, 45, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Josephson, L.; Perez, J.M.; Weissleder, R. Magnetic Nanosensors for the Detection of Oligonucleotide Sequences. Angew. Chem. Int. Ed. 2001, 40, 3204–3206. [Google Scholar] [CrossRef]
- Perez, J.M.; O’Loughin, T.; Simeone, F.J.; Weissleder, R.; Josephson, L. DNA-Based Magnetic Nanoparticle Assembly Acts as a Magnetic Relaxation Nanoswitch Allowing Screening of DNA-Cleaving Agents. J. Am. Chem. Soc. 2002, 124, 2856–2857. [Google Scholar] [CrossRef] [PubMed]
- Perez, J.M.; Josephson, L.; O’Loughlin, T.; Högemann, D.; Weissleder, R. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 2002, 20, 816–820. [Google Scholar] [CrossRef] [PubMed]
- Alcantara, D.; Guo, Y.; Yuan, H.; Goergen, C.J.; Chen, H.H.; Cho, H.; Sosnovik, D.E.; Josephson, L. Fluorochrome-functionalized magnetic nanoparticles for high-sensitivity monitoring of the polymerase chain reaction by magnetic resonance. Angew. Chem. Int. Ed. 2012, 51, 6904–6907. [Google Scholar] [CrossRef] [PubMed]
- Liong, M.; Hoang, A.N.; Chung, J.; Gural, N.; Ford, C.B.; Min, C.; Shah, R.R.; Ahmad, R.; Fernandez-Suarez, M.; Fortune, S.M.; et al. Magnetic barcode assay for genetic detection of pathogens. Nat. Commun. 2013, 4, 1752. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.J.; Castro, C.M.; Im, H.; Lee, H.; Weissleder, R. A magneto-DNA nanoparticle system for rapid detection and phenotyping of bacteria. Nat. Nanotechnol. 2013, 8, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Josephson, L.; Tang, Y.; Weissleder, R. Magnetic Sensors for Protease Assays. Angew. Chem. Int. Ed. 2003, 42, 1375–1378. [Google Scholar] [CrossRef] [PubMed]
- Bamrungsap, S.; Shukoor, M.I.; Chen, T.; Sefah, K.; Tan, W. Detection of lysozyme magnetic relaxation switches based on aptamer-functionalized superparamagnetic nanoparticles. Anal. Chem. 2011, 83, 7795–7799. [Google Scholar] [CrossRef] [PubMed]
- Grimm, J.; Perez, J.M.; Josephson, L.; Weissleder, R. Novel nanosensors for rapid analysis of telomerase activity. Cancer Res. 2004, 64, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Santiesteban, O.J.; Kaittanis, C.; Perez, J.M. Assessment of molecular interactions through magnetic relaxation. Angew. Chem. Int. Ed. 2012, 51, 6728–6732. [Google Scholar] [CrossRef] [PubMed]
- Perez, J.M.; Simeone, F.J.; Saeki, Y.; Josephson, L.; Weissleder, R. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc. 2003, 125, 10192–10193. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xianyu, Y.; Wang, Y.; Zhang, X.; Cha, R.; Sun, J.; Jiang, X. One-step detection of pathogens and viruses: combining magnetic relaxation switching and magnetic separation. ACS Nano 2015, 9, 3184–3191. [Google Scholar] [CrossRef] [PubMed]
- Bamrungsap, S.; Chen, T.; Shukoor, M.I.; Chen, Z.; Sefah, K.; Chen, Y.; Tan, W. Pattern recognition of cancer cells using aptamer-conjugated magnetic nanoparticles. ACS Nano 2012, 6, 3974–3981. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Kuang, H.; Yan, W.; Hao, C.; Xing, C.; Wu, X.; Wang, L.; Xu, C. Facile and rapid magnetic relaxation switch immunosensor for endocrine-disrupting chemicals. Biosens. Bioelectron. 2012, 32, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Tsourkas, A.; Hofstetter, O.; Hofstetter, H.; Weissleder, R.; Josephson, L. Magnetic relaxation switch immunosensors detect enantiomeric impurities. Angew. Chem. Int. Ed. 2004, 43, 2395–2399. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xie, M. A magnetic relaxation switching immunosensor for one-step detection of salbutamol based on gold nanoparticle–streptavidin conjugate. RSC Adv. 2015, 5, 95401–95404. [Google Scholar] [CrossRef]
- Santiesteban, O.J.; Kaittanis, C.; Perez, J.M. Identification of toxin inhibitors using a magnetic nanosensor-based assay. Small 2014, 10, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Atanasijevic, T.; Shusteff, M.; Fam, P.; Jasanoff, A. Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. Proc. Natl. Acad. Sci. USA 2006, 103, 14707–14712. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Yoon, T.-J.; Lee, H.; Andress, W.; Weissleder, R.; Ham, D. Palm NMR and 1-Chip NMR. IEEE J. Solid State Circuits 2011, 46, 342–352. [Google Scholar] [CrossRef]
- Issadore, D.; Min, C.; Liong, M.; Chung, J.; Weissleder, R.; Lee, H. Miniature magnetic resonance system for point-of-care diagnostics. Lab Chip 2011, 11, 2282–2287. [Google Scholar] [CrossRef] [PubMed]
- Daniel, K.D.; Kim, G.Y.; Vassiliou, C.C.; Galindo, M.; Guimaraes, A.R.; Weissleder, R.; Charest, A.; Langer, R.; Cima, M.J. Implantable diagnostic device for cancer monitoring. Biosens. Bioelectron. 2009, 24, 3252–3257. [Google Scholar] [CrossRef] [PubMed]
- Daniel, K.D.; Kim, G.Y.; Vassiliou, C.C.; Jalali-Yazdi, F.; Langer, R.; Cima, M.J. Multi-reservoir device for detecting a soluble cancer biomarker. Lab Chip 2007, 7, 1288–1293. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Pong, T.; Vassiliou, C.C.; Huang, P.L.; Cima, M.J. Implantable magnetic relaxation sensors measure cumulative exposure to cardiac biomarkers. Nat. Biotechnol. 2011, 29, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Anker, J.N.; Kopelman, R. Magnetically modulated optical nanoprobes. Appl. Phys. Lett. 2003, 82, 1102. [Google Scholar] [CrossRef]
- Anker, J.N.; Behrend, C.; Kopelman, R. Aspherical magnetically modulated optical nanoprobes (MagMOONs). J. Appl. Phys. 2003, 93, 6698. [Google Scholar] [CrossRef]
- Petkus, M.M.; McLauchlin, M.; Vuppu, A.K.; Rios, L.; Garcia, A.A.; Hayes, M.A. Detection of FITC-cortisol via modulated supraparticle lighthouses. Anal. Chem. 2006, 78, 1405–1411. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.A.; Petkus, M.M.; Garcia, A.A.; Taylor, T.; Mahanti, P. Demonstration of sandwich and competitive modulated supraparticle fluoroimmunoassay applied to cardiac protein biomarker myoglobin. Analyst 2009, 134, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Mahanti, P.; Taylor, T.; Hayes, M.A.; Cochran, D.; Petkus, M.M. Improved detectability and signal strength for rotating phase fluorescence immunoassays through image processing. Analyst 2011, 136, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Woolley, C.F.; Hayes, M.A. Sensitive Detection of Cardiac Biomarkers Using a Magnetic Microbead Immunoassay. Anal. Methods 2015, 7, 8632–8639. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Donolato, M.; Pinto, A.; Bosco, F.G.; Hwu, E.-T.; Chen, C.-H.; Alstrøm, T.S.; Lee, G.-H.; Schäfer, T.; Vavassori, P.; et al. Blu-ray based optomagnetic aptasensor for detection of small molecules. Biosens. Bioelectron. 2016, 75, 396–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baudry, J.; Rouzeau, C.; Goubault, C.; Robic, C.; Cohen-Tannoudji, L.; Koenig, A.; Bertrand, E.; Bibette, J. Acceleration of the recognition rate between grafted ligands and receptors with magnetic forces. Proc. Natl. Acad. Sci. USA 2006, 103, 16076–16078. [Google Scholar] [CrossRef] [PubMed]
- Singer, J.M.; Plotz, C.M. The latex fixation test. Am. J. Med. 1956, 21, 888–892. [Google Scholar] [CrossRef]
- Lee, N.-K.; Johner, A.; Thalmann, F.; Cohen-Tannoudji, L.; Bertrand, E.; Baudry, J.; Bibette, J.; Marques, C.M. Ligand-receptor interactions in chains of colloids: When reactions are limited by rotational diffusion. Langmuir 2008, 24, 1296–1307. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Tannoudji, L.; Bertrand, E.; Baudry, J.; Robic, C.; Goubault, C.; Pellissier, M.; Johner, A.; Thalmann, F.; Lee, N.K.; Marques, C.M.; et al. Measuring the kinetics of biomolecular recognition with magnetic colloids. Phys. Rev. Lett. 2008, 100, 108301. [Google Scholar] [CrossRef] [PubMed]
- Daynès, A.; Temurok, N.; Gineys, J.-P.; Cauet, G.; Nerin, P.; Baudry, J.; Bibette, J. Fast Magnetic Field-Enhanced Linear Colloidal Agglutination Immunoassay. Anal. Chem. 2015, 87, 7583–7587. [Google Scholar] [CrossRef] [PubMed]
- Ramiandrisoa, D.; Brient-Litzler, E.; Daynes, A.; Compain, E.; Bibette, J.; Baudry, J. Optical protein detection based on magnetic clusters rotation. N. Biotechnol. 2015, 32, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Handa, H.; Sandhu, A. Magneto-optical biosensing platform based on light scattering from self-assembled chains of functionalized rotating magnetic beads. Nano Lett. 2010, 10, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Ranzoni, A.; Schleipen, J.; van Ijzendoorn, L.J.; Prins, M.W.J. Frequency-selective rotation of two-particle nanoactuators for rapid and sensitive detection of biomolecules. Nano Lett. 2011, 11, 2017–2022. [Google Scholar] [CrossRef] [PubMed]
- Ranzoni, A.; Janssen, X.J.A.; Ovsyanko, M.; van Ijzendoorn, L.J.; Prins, M.W.J. Magnetically controlled rotation and torque of uniaxial microactuators for lab-on-a-chip applications. Lab Chip 2010, 10, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Ranzoni, A.; Sabatte, G.; van Ijzendoorn, L.J.; Prins, M.W.J. One-step homogeneous magnetic nanoparticle immunoassay for biomarker detection directly in blood plasma. ACS Nano 2012, 6, 3134–3141. [Google Scholar] [CrossRef] [PubMed]
- Kinnunen, P.; McNaughton, B.H.; Albertson, T.; Sinn, I.; Mofakham, S.; Elbez, R.; Newton, D.W.; Hunt, A.; Kopelman, R. Self-assembled magnetic bead biosensor for measuring bacterial growth and antimicrobial susceptibility testing. Small 2012, 8, 2477–2482. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, B.H.; Kehbein, K.A.; Anker, J.N.; Kopelman, R. Sudden breakdown in linear response of a rotationally driven magnetic microparticle and application to physical and chemical microsensing. J. Phys. Chem. B 2006, 110, 18958–18964. [Google Scholar] [CrossRef] [PubMed]
- Hecht, A.; Commiskey, P.; Shah, N.; Kopelman, R. Bead assembly magnetorotation as a signal transduction method for protein detection. Biosens. Bioelectron. 2013, 48, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Kinnunen, P.; Carey, M.E.; Craig, E.; Brahmasandra, S.N.; McNaughton, B.H. Rapid bacterial growth and antimicrobial response using self-assembled magnetic bead sensors. Sens. Actuator B Chem. 2014, 190, 265–269. [Google Scholar] [CrossRef]
- Donolato, M.; Antunes, P.; Gómez de la Torre, T.Z.; Hwu, E.-T.; Chen, C.-H.; Burger, R.; Rizzi, G.; Bosco, F.G.; Strømme, M.; Boisen, A.; et al. Quantification of rolling circle amplified DNA using magnetic nanobeads and a Blu-ray optical pick-up unit. Biosens. Bioelectron. 2015, 67, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Antunes, P.; Watterson, D.; Parmvi, M.; Burger, R.; Boisen, A.; Young, P.; Cooper, M.A.; Hansen, M.F.; Ranzoni, A.; Donolato, M. Quantification of NS1 dengue biomarker in serum via optomagnetic nanocluster detection. Sci. Rep. 2015, 5, 16145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donolato, M.; Antunes, P.; Bejhed, R.S.; Gómez de la Torre, T.Z.; Østerberg, F.W.; Strömberg, M.; Nilsson, M.; Strømme, M.; Svedlindh, P.; Hansen, M.F.; et al. Novel readout method for molecular diagnostic assays based on optical measurements of magnetic nanobead dynamics. Anal. Chem. 2015, 87, 1622–1629. [Google Scholar] [CrossRef] [PubMed]
- Mezger, A.; Fock, J.; Antunes, P.; Østerberg, F.W.; Boisen, A.; Nilsson, M.; Hansen, M.F.; Ahlford, A.; Donolato, M. Scalable DNA-Based Magnetic Nanoparticle Agglutination Assay for Bacterial Detection in Patient Samples. ACS Nano 2015, 9, 7374–7382. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Bejhed, R.S.; Svedlindh, P.; Strömberg, M. Blu-ray optomagnetic measurement based competitive immunoassay for Salmonella detection. Biosens. Bioelectron. 2016, 77, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Muller, D.A.; Young, P.R. The flavivirus NS1 protein: Molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Res. 2013, 98, 192–208. [Google Scholar] [CrossRef] [PubMed]
- Leslie, D.C.; Li, J.; Strachan, B.C.; Begley, M.R.; Finkler, D.; Bazydlo, L.A.L.; Barker, N.S.; Haverstick, D.M.; Utz, M.; Landers, J.P. New detection modality for label-free quantification of DNA in biological samples via superparamagnetic bead aggregation. J. Am. Chem. Soc. 2012, 134, 5689–5696. [Google Scholar] [CrossRef] [PubMed]
- Strachan, B.C.; Sloane, H.S.; Lee, J.C.; Leslie, D.C.; Landers, J.P. Investigation of the DNA target design parameters for effective hybridization-induced aggregation of particles for the sequence-specific detection of DNA. Analyst 2015, 140, 2008–2015. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.A.; Strachan, B.C.; Sloane, H.S.; Li, J.; Landers, J.P. Dual-force aggregation of magnetic particles enhances label-free quantification of DNA at the sub-single cell level. Anal. Chim Acta 2014, 819, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Melzak, K.A.; Sherwood, C.S.; Turner, R.F.; Haynes, C.A. Driving Forces for DNA Adsorption to Silica in Perchlorate Solutions. J. Colloid Interface Sci. 1996, 181, 635–644. [Google Scholar] [CrossRef]
- Li, J.; Liu, Q.; Xiao, L.; Haverstick, D.M.; Dewald, A.; Columbus, L.; Kelly, K.; Landers, J.P. Label-free method for cell counting in crude biological samples via paramagnetic bead aggregation. Anal. Chem. 2013, 85, 11233–11239. [Google Scholar] [CrossRef] [PubMed]
- Sloane, H.S.; Kelly, K.A.; Landers, J.P. Rapid KRAS Mutation Detection via Hybridization-Induced Aggregation of Microbeads. Anal. Chem. 2015, 87, 10275–10282. [Google Scholar] [CrossRef] [PubMed]
- DuVall, J.A.; Borba, J.C.; Shafagati, N.; Luzader, D.; Shukla, N.; Li, J.; Kehn-Hall, K.; Kendall, M.M.; Feldman, S.H.; Landers, J.P. Optical Imaging of Paramagnetic Bead-DNA Aggregation Inhibition Allows for Low Copy Number Detection of Infectious Pathogens. PLoS ONE 2015, 10, e0129830. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Q.; Alsamarri, H.; Lounsbury, J.A.; Haversitick, D.M.; Landers, J.P. Label-free DNA quantification via a ‘pipette, aggregate and blot’ (PAB) approach with magnetic silica particles on filter paper. Lab Chip 2013, 13, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Zhang, Y.; Zhou, X.; Yao, B.; Fang, Q. Naked-eye detection of nucleic acids through rolling circle amplification and magnetic particle mediated aggregation. Biosens. Bioelectron. 2013, 47, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xianyu, Y.; Sun, J.; Niu, Y.; Wang, Y.; Jiang, X. One-step detection of pathogens and cancer biomarkers by the naked eye based on aggregation of immunomagnetic beads. Nanoscale 2015, 8, 1100–1107. [Google Scholar] [CrossRef] [PubMed]
- Bentivegna, F.; Nyvlt, M.; Ferré, J.; Jamet, J.P.; Brun, A.; Vis̆n̆ovsky, S.; Urban, R. Magnetically textured γ-Fe2O3 nanoparticles in a silica gel matrix: Optical and magneto-optical properties. J. Appl. Phys. 1999, 85, 2270. [Google Scholar] [CrossRef]
- Delaunay, L.; Neveu, S.; Noyel, G.; Monin, J. A new spectrometric method, using a magneto-optical effect, to study magnetic liquids. J. Magn. Magn. Mater. 1995, 149, L239–L245. [Google Scholar] [CrossRef]
- Bacri, J.-C.; Perzynski, R.; Salin, D.; Cabuil, V.; Massart, R. Magnetic colloidal properties of ionic ferrofluids. J. Magn. Magn. Mater. 1986, 62, 36–46. [Google Scholar] [CrossRef]
- Chung, S.-H.; Grimsditch, M.; Hoffmann, A.; Bader, S.D.; Xie, J.; Peng, S.; Sun, S. Magneto-optic measurement of Brownian relaxation of magnetic nanoparticles. J. Magn. Magn. Mater. 2008, 320, 91–95. [Google Scholar] [CrossRef]
- Davies, H.W.; Llewellyn, J.P. Magnetic birefringence of ferrofluids. II. Pulsed field measurements. J. Phys. D Appl. Phys. 1979, 12, 1357–1363. [Google Scholar] [CrossRef]
- Büttner, M.; Weber, P.; Schmidl, F.; Seidel, P.; Röder, M.; Schnabelrauch, M.; Wagner, K.; Görnert, P.; Glöckl, G.; Weitschies, W. Investigation of magnetic active core sizes and hydrodynamic diameters of a magnetically fractionated ferrofluid. J. Nanopart. Res. 2011, 13, 165–173. [Google Scholar] [CrossRef]
- Payet, B.; Dufour, J.; Jorat, L.; Noyel, G. A magneto-optical method for viscosimetric measurements. Meas. Sci. Technol. 1999, 10, 1054–1058. [Google Scholar] [CrossRef]
- Köber, M.; Moros, M.; Grazú, V.; de la Fuente, J.M.; Luna, M.; Briones, F. Transient magnetic birefringence for determining magnetic nanoparticle diameters in dense, highly light scattering media. Nanotechnology 2012, 23, 155501. [Google Scholar] [CrossRef] [PubMed]
- Hasmonay, E.; Dubois, E.; Bacri, J.-C.; Perzynski, R.; Raikher, Y.L.; Stepanov, V.I. Static magneto-optical birefringence of size-sorted nanoparticles. Eur. Phys. J. B 1998, 5, 859–867. [Google Scholar] [CrossRef]
- Wilhelm, C.; Gazeau, F.; Roger, J.; Pons, J.N.; Salis, M.F.; Perzynski, R.; Bacri, J.C. Binding of biological effectors on magnetic nanoparticles measured by a magnetically induced transient birefringence experiment. Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 2002, 65, 31404. [Google Scholar] [CrossRef] [PubMed]
- Ku, B.Y.; Chan, M.-L.; Ma, Z.; Horsley, D.A. Frequency-domain birefringence measurement of biological binding to magnetic nanoparticles. J. Magn. Magn. Mater. 2008, 320, 2279–2283. [Google Scholar] [CrossRef] [PubMed]
- Lartigue, L.; Wilhelm, C.; Servais, J.; Factor, C.; Dencausse, A.; Bacri, J.-C.; Luciani, N.; Gazeau, F. Nanomagnetic sensing of blood plasma protein interactions with iron oxide nanoparticles: Impact on macrophage uptake. ACS Nano 2012, 6, 2665–2678. [Google Scholar] [CrossRef] [PubMed]
- Glöckl, G.; Brinkmeier, V.; Aurich, K.; Romanus, E.; Weber, P.; Weitschies, W. Development of a liquid phase immunoassay by time-dependent measurements of the transient magneto-optical birefringence using functionalized magnetic nanoparticles. J. Magn. Magn. Mater. 2005, 289, 480–483. [Google Scholar] [CrossRef]
- Aurich, K.; Nagel, S.; Heister, E.; Weitschies, W. Affinity analysis for biomolecular interactions based on magneto-optical relaxation measurements. Nanotechnology 2008, 19, 505102. [Google Scholar] [CrossRef] [PubMed]
- Aurich, K.; Glöckl, G.; Romanus, E.; Weber, P.; Nagel, S.; Weitschies, W. Magneto-optical relaxation measurements for the characterization of biomolecular interactions. J. Phys. Condens. Matter 2006, 18, S2847–S2863. [Google Scholar] [CrossRef]
- Aurich, K.; Glöckl, G.; Nagel, S.; Weitschies, W. Magneto-optical relaxation measurements of functionalized nanoparticles as a novel biosensor. Sensors 2009, 9, 4022–4033. [Google Scholar] [CrossRef] [PubMed]
- Aurich, K.; Nagel, S.; Glöckl, G.; Weitschies, W. Determination of the magneto-optical relaxation of magnetic nanoparticles as a homogeneous immunoassay. Anal. Chem. 2007, 79, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Köber, M.; Moros, M.; Franco Fraguas, L.; Grazú, V.; de la Fuente, J.M.; Luna, M.; Briones, F. Nanoparticle-mediated monitoring of carbohydrate-lectin interactions using Transient Magnetic Birefringence. Anal. Chem. 2014, 86, 12159–12165. [Google Scholar] [CrossRef] [PubMed]
- de Gennes, P.G. Soft matter. Rev. Mod. Phys. 1992, 64, 645–648. [Google Scholar] [CrossRef]
- Perro, A.; Reculusa, S.; Ravaine, S.; Bourgeat-Lami, E.; Duguet, E. Design and synthesis of Janus micro- and nanoparticles. J. Mater. Chem. 2005, 15, 3745. [Google Scholar] [CrossRef]
- Du, J.; O’Reilly, R.K. Anisotropic particles with patchy, multicompartment and Janus architectures: preparation and application. Chem. Soc. Rev. 2011, 40, 2402–2416. [Google Scholar] [CrossRef] [PubMed]
- Lattuada, M.; Hatton, T.A. Synthesis, properties and applications of Janus nanoparticles. Nano Today 2011, 6, 286–308. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, S.; Sun, Y.; Fang, X.; Wu, L. Fabrication, properties and applications of Janus particles. Chem. Soc. Rev. 2012, 41, 4356–4378. [Google Scholar] [CrossRef] [PubMed]
- Kaewsaneha, C.; Tangboriboonrat, P.; Polpanich, D.; Eissa, M.; Elaissari, A. Janus colloidal particles: Preparation, properties, and biomedical applications. ACS Appl. Mater. Interfaces 2013, 5, 1857–1869. [Google Scholar] [CrossRef] [PubMed]
- Walther, A.; Müller, A.H.E. Janus particles: Synthesis, self-assembly, physical properties, and applications. Chem. Rev. 2013, 113, 5194–5261. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, B.H.; Agayan, R.R.; Clarke, R.; Smith, R.G.; Kopelman, R. Single bacterial cell detection with nonlinear rotational frequency shifts of driven magnetic microspheres. Appl. Phys. Lett. 2007, 91, 224105. [Google Scholar] [CrossRef]
- Sinn, I.; Kinnunen, P.; Pei, S.N.; Clarke, R.; McNaughton, B.H.; Kopelman, R. Magnetically uniform and tunable Janus particles. Appl. Phys. Lett. 2011, 98, 24101. [Google Scholar] [CrossRef]
- Sinn, I.; Albertson, T.; Kinnunen, P.; Breslauer, D.N.; McNaughton, B.H.; Burns, M.A.; Kopelman, R. Asynchronous magnetic bead rotation microviscometer for rapid, sensitive, and label-free studies of bacterial growth and drug sensitivity. Anal. Chem. 2012, 84, 5250–5256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinn, I.; Kinnunen, P.; Albertson, T.; McNaughton, B.H.; Newton, D.W.; Burns, M.A.; Kopelman, R. Asynchronous magnetic bead rotation (AMBR) biosensor in microfluidic droplets for rapid bacterial growth and susceptibility measurements. Lab Chip 2011, 11, 2604–2611. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, B.H.; Kinnunen, P.; Smith, R.G.; Pei, S.N.; Torres-Isea, R.; Kopelman, R.; Clarke, R. Compact sensor for measuring nonlinear rotational dynamics of driven magnetic microspheres with biomedical applications. J. Magn. Magn. Mater. 2009, 321, 1648–1652. [Google Scholar] [CrossRef]
- Hecht, A.; Kinnunen, P.; McNaughton, B.; Kopelman, R. Label-acquired magnetorotation for biosensing: An asynchronous rotation assay. J. Magn. Magn. Mater. 2011, 323, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Hecht, A.; Kumar, A.A.; Kopelman, R. Label-acquired magnetorotation as a signal transduction method for protein detection: Aptamer-based detection of thrombin. Anal. Chem. 2011, 83, 7123–7128. [Google Scholar] [CrossRef] [PubMed]
- Klein, T.; Laptev, A.; Günther, A.; Bender, P.; Tschöpe, A.; Birringer, R. Magnetic-field-dependent optical transmission of nickel nanorod colloidal dispersions. J. Appl. Phys. 2009, 106, 114301. [Google Scholar] [CrossRef]
- Schrittwieser, S.; Schotter, J.; Maier, T.; Bruck, R.; Muellner, P.; Kataeva, N.; Soulantika, K.; Ludwig, F.; Huetten, A.; Brueckl, H. Homogeneous biosensor based on optical detection of the rotational dynamics of anisotropic nanoparticles. Procedia Eng. 2010, 5, 1107–1110. [Google Scholar] [CrossRef]
- Schrittwieser, S.; Ludwig, F.; Dieckhoff, J.; Soulantica, K.; Viau, G.; Lacroix, L.-M.; Lentijo, S.M.; Boubekri, R.; Maynadié, J.; Huetten, A.; et al. Modeling and development of a biosensor based on optical relaxation measurements of hybrid nanoparticles. ACS Nano 2012, 6, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Schrittwieser, S.; Ludwig, F.; Dieckhoff, J.; Tschoepe, A.; Guenther, A.; Richter, M.; Huetten, A.; Brueckl, H.; Schotter, J. Direct protein detection in the sample solution by monitoring rotational dynamics of nickel nanorods. Small 2014, 10, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Schrittwieser, S.; Pelaz, B.; Parak, W.J.; Lentijo-Mozo, S.; Soulantica, K.; Dieckhoff, J.; Ludwig, F.; Altantzis, T.; Bals, S.; Schotter, J. Homogeneous Protein Analysis by Magnetic Core–Shell Nanorod Probes. ACS Appl. Mater. Interfaces 2016, 8, 8893–8899. [Google Scholar] [CrossRef] [PubMed]
- Günther, A.; Bender, P.; Tschöpe, A.; Birringer, R. Rotational diffusion of magnetic nickel nanorods in colloidal dispersions. J. Phys. Condens. Matter 2011, 23, 325103. [Google Scholar] [CrossRef] [PubMed]
- Wetz, F.; Soulantica, K.; Respaud, M.; Falqui, A.; Chaudret, B. Synthesis and magnetic properties of Co nanorod superlattices. Mater. Sci. Eng. C 2007, 27, 1162–1166. [Google Scholar] [CrossRef]
- Hainberger, R.; Muellner, P.; Melnik, E.; Wellenzohn, M.; Bruck, R.; Schotter, J.; Schrittwieser, S.; Waldow, M.; Wahlbrink, T.; Koppitsch, G.; et al. Integrated optical waveguide and nanoparticle based label-free molecular biosensing concepts. In Proceedings of the SPIE 8933 Frontiers in Biological Detection: From Nanosensors to Systems VI 2014, San Francisco, CA, USA, 1–2 February 2014.
- Schotter, J.; Schrittwieser, S.; Muellner, P.; Melnik, E.; Hainberger, R.; Koppitsch, G.; Schrank, F.; Soulantica, K.; Lentijo-Mozo, S.; Pelaz, B.; et al. Optical biosensor technologies for molecular diagnostics at the point-of-care. Proc. SPIE 2015, 9490. [Google Scholar] [CrossRef]
- Masuda, H.; Satoh, M. Fabrication of Gold Nanodot Array Using Anodic Porous Alumina as an Evaporation Mask. Jpn. J. Appl. Phys. 1996, 35, L126–L129. [Google Scholar] [CrossRef]
- Nielsch, K.; Müller, F.; Li, A.-P.; Gösele, U. Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition. Adv. Mater. 2000, 12, 582–586. [Google Scholar] [CrossRef]
- Röcker, C.; Pötzl, M.; Zhang, F.; Parak, W.J.; Nienhaus, G.U. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat. Nanotechnol. 2009, 4, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Enpuku, K.; Dieckhoff, J.; Schilling, M.; Ludwig, F. Magnetic fluid dynamics in a rotating magnetic field. J. Appl. Phys. 2012, 111, 53901. [Google Scholar] [CrossRef]
- Maffre, P.; Brandholt, S.; Nienhaus, K.; Shang, L.; Parak, W.J.; Nienhaus, G.U. Effects of surface functionalization on the adsorption of human serum albumin onto nanoparticles—A fluorescence correlation spectroscopy study. Beilstein J. Nanotechnol. 2014, 5, 2036–2047. [Google Scholar] [CrossRef] [PubMed]
- Lentijo-Mozo, S.; Tan, R.P.; Garcia-Marcelot, C.; Altantzis, T.; Fazzini, P.-F.; Hungria, T.; Cormary, B.; Gallagher, J.R.; Miller, J.T.; Martinez, H.; et al. Air- and water-resistant noble metal coated ferromagnetic cobalt nanorods. ACS Nano 2015, 9, 2792–2804. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.G.; Pelaz, B.; Parak, W.J.; Del Pino, P. Phase transfer and polymer coating methods toward improving the stability of metallic nanoparticles for biological applications. Chem. Mater. 2015, 27, 990–997. [Google Scholar] [CrossRef]
- Molina, R.; Barak, V.; van Dalen, A.; Duffy, M.J.; Einarsson, R.; Gion, M.; Goike, H.; Lamerz, R.; Nap, M.; Sölétormos, G.; et al. Tumor Markers in Breast Cancer—European Group on Tumor Markers Recommendations. Tumour Biol. 2005, 26, 281–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, Y.; Jeong, J.Y.; Chung, B.H. Recent Advances in Immobilization Methods of Antibodies on Solid Supports. Analyst 2008, 133, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Alique, E.; Núñez-Ramírez, R.; Vega, J.F.; Hu, P.; Martínez-Salazar, J. Size and Conformational Features of ErbB2 and ErbB3 Receptors: A TEM and DLS Comparative Study. Eur. Biophys. J. 2011, 40, 835–842. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schrittwieser, S.; Pelaz, B.; Parak, W.J.; Lentijo-Mozo, S.; Soulantica, K.; Dieckhoff, J.; Ludwig, F.; Guenther, A.; Tschöpe, A.; Schotter, J. Homogeneous Biosensing Based on Magnetic Particle Labels. Sensors 2016, 16, 828. https://doi.org/10.3390/s16060828
Schrittwieser S, Pelaz B, Parak WJ, Lentijo-Mozo S, Soulantica K, Dieckhoff J, Ludwig F, Guenther A, Tschöpe A, Schotter J. Homogeneous Biosensing Based on Magnetic Particle Labels. Sensors. 2016; 16(6):828. https://doi.org/10.3390/s16060828
Chicago/Turabian StyleSchrittwieser, Stefan, Beatriz Pelaz, Wolfgang J. Parak, Sergio Lentijo-Mozo, Katerina Soulantica, Jan Dieckhoff, Frank Ludwig, Annegret Guenther, Andreas Tschöpe, and Joerg Schotter. 2016. "Homogeneous Biosensing Based on Magnetic Particle Labels" Sensors 16, no. 6: 828. https://doi.org/10.3390/s16060828
APA StyleSchrittwieser, S., Pelaz, B., Parak, W. J., Lentijo-Mozo, S., Soulantica, K., Dieckhoff, J., Ludwig, F., Guenther, A., Tschöpe, A., & Schotter, J. (2016). Homogeneous Biosensing Based on Magnetic Particle Labels. Sensors, 16(6), 828. https://doi.org/10.3390/s16060828