A Novel One-Step Fabricated, Droplet-Based Electrochemical Sensor for Facile Biochemical Assays
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Reagents
2.2. Apparatus
2.3. Design and Preparation of the Sensor
2.4. Analytical Assays
3. Results and Discussion
3.1. Electrode Design and Droplet Formation Associated with the Proposed Sensor
3.2. Electrochemical Characteristics of the Proposed Sensor
3.3. Biochemical Assay Applications of the Sensor
3.4. Determination of AA or Cu2+ in Real Samples
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kimmel, D.W.; LeBlanc, G.; Meschievitz, M.E.; Cliffel, D.E. Electrochemical sensors and biosensors. Anal. Chem. 2012, 84, 685–707. [Google Scholar] [CrossRef] [PubMed]
- Dungchai, W.; Chailapakul, O.; Henry, C.S. Electrochemical detection for paper-based microfluidics. Anal. Chem. 2009, 81, 5821–5826. [Google Scholar] [CrossRef] [PubMed]
- Yetisen, A.K.; Akram, M.S.; Lowe, C.R. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 2013, 13, 2210–2251. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, E.J.; Mazzeo, A.D.; Whitesides, G.M. Paper-based electroanalytical devices for accessible diagnostic testing. MRS Bull. 2013, 38, 309–314. [Google Scholar] [CrossRef]
- Ruecha, N.; Rangkupan, R.; Rodthongkum, N.; Chailapakul, O. Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens. Bioelectron. 2014, 52, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Toniolo, R.; Dossi, N.; Pizzariello, A.; Casagrande, A.; Bontempelli, G. Electrochemical gas sensors based on paper-supported room-temperature ionic liquids for improved analysis of acid vapours. Anal. Bioanal. Chem. 2013, 405, 3571–3577. [Google Scholar] [CrossRef] [PubMed]
- Lan, W.J.; Maxwell, E.J.; Parolo, C.; Bwambok, D.K.; Subramaniam, A.B.; Whitesides, G.M. Paper-based electroanalytical devices with an integrated, stable reference electrode. Lab Chip 2013, 13, 4103–4108. [Google Scholar] [CrossRef] [PubMed]
- Tee-ngam, P.; Nunant, N.; Rattanarat, P.; Siangproh, W.; Chailapakul, O. Simple and rapid determination of ferulic acid levels in food and cosmetic samples using paper-based platforms. Sensors 2013, 13, 13039–13053. [Google Scholar] [CrossRef] [PubMed]
- Nurak, T.; Praphairaksit, N.; Chailapakul, O. Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water. Talanta 2013, 114, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Apilux, A.; Dungchai, W.; Siangproh, W.; Praphairaksit, N.; Henry, C.S.; Chailapakul, O. Lab-on-paper with dual electrochemical/colorimetric detection for simultaneous determination of gold and iron. Anal. Chem. 2010, 82, 1727–1732. [Google Scholar] [CrossRef] [PubMed]
- Pozuelo, M.; Blondeau, P.; Novell, M.; Andrade, F.J.; Rius, F.X.; Riu, J. Paper-based chemiresistor for detection of ultralow concentrations of protein. Biosens. Bioelectron. 2013, 49, 462–465. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Thuo, M.M.; Liu, X.Y. A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers. Sci. Technol. Adv. Mater. 2013, 14, 054402. [Google Scholar] [CrossRef]
- Dossi, N.; Toniolo, R.; Pizzariello, A.; Impellizzieri, F.; Piccin, E.; Bontempelli, G. Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices. Electrophoresis 2013, 34, 2085–2091. [Google Scholar] [CrossRef] [PubMed]
- Dossi, N.; Toniolo, R.; Piccin, E.; Susmel, S.; Pizzariello, A.; Bontempelli, G. Pencil-drawn dual electrode detectors to discriminate between analytes comigrating on paper-based fluidic devices but undergoing electrochemical processes with different reversibility. Electroanalysis 2013, 25, 2515–2522. [Google Scholar] [CrossRef]
- Dossi, N.; Toniolo, R.; Pizzariello, A.; Carrilho, E.; Piccin, E.; Battiston, S.; Bontempelli, G. An electrochemical gas sensor based on paper supported room temperature ionic liquids. Lab Chip 2012, 12, 153–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, Z.H.; Nijhuis, C.A.; Gong, J.L.; Chen, X.; Kumachev, A.; Martinez, A.W.; Narovlyansky, M.; Whitesides, G.M. Electrochemical sensing in paper-based microfluidic devices. Lab Chip 2010, 10, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Carvalhal, R.F.; Kfouri, M.S.; de Oliveira Piazetta, M.H.; Gobbi, A.L.; Kubota, L.T. Electrochemical detection in a paper-based separation device. Anal. Chem. 2010, 82, 1162–1165. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.N.; Ge, L.Y.; Wang, W. Paper disk on screen printed electrode for one-step sensing with an internal standard. Anal. Chem. 2010, 82, 8844–8847. [Google Scholar] [CrossRef] [PubMed]
- Rattanarat, P.; Dungchai, W.; Siangproh, W.; Chailapakul, O.; Henry, C.S. Sodium dodecyl sulfate-modified electrochemical paper-based analytical device for determination of dopamine levels in biological samples. Anal. Chim. Acta 2012, 744, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lankelma, J.; Nie, Z.H.; Carrilho, E.; Whitesides, G.M. Paper-based analytical device for electrochemical flow-injection analysis of glucose in urine. Anal. Chem. 2012, 84, 4147–4152. [Google Scholar] [CrossRef] [PubMed]
- Santhiago, M.; Kubota, L.T. A new approach for paper-based analytical devices with electrochemical detection based on graphite pencil electrodes. Sens. Actuators B Chem. 2013, 177, 224–230. [Google Scholar] [CrossRef]
- Noiphung, J.; Songjaroen, T.; Dungchai, W.; Henry, C.S.; Chailapakul, O.; Laiwattanapaisalf, W. Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Anal. Chim. Acta 2013, 788, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Rattanarat, P.; Dungchai, W.; Cate, D.; Volckens, J.; Chailapakul, O.; Henry, C.S. Multilayer paper-based device for colorimetric and electrochemical quantification of metals. Anal. Chem. 2014, 86, 3555–3562. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.W.; Lisak, G.; Strzalkowska, S.; Bobacka, J. Potentiometric sensing utilizing paper-based microfluidic sampling. Analyst 2014, 139, 2133–2136. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, T.H.; Song, E.; Tortorich, R.P.; Choi, J.W. A paper-based electrochemical sensor using inkjet-printed carbon nanotube electrodes. ECS J. Solid State Sci. Technol. 2015, 4, S3044–S3047. [Google Scholar] [CrossRef]
- Tortorich, R.P.; Song, E.; Choi, J.W. Inkjet-printed carbon nanotube electrodes with low sheet resistance for electrochemical sensor applications. J. Electrochem. Soc. 2014, 161, B3044–B3048. [Google Scholar] [CrossRef]
- Zhang, C.S.; Xing, D. Single-molecule DNA amplification and analysis using microfluidics. Chem. Rev. 2010, 110, 4910–4947. [Google Scholar] [CrossRef] [PubMed]
- Fanjul-Bolado, P.; Lamas-Ardisana, P.J.; Hernández-Santos, D.; Costa-García, A. Electrochemical study and flow injection analysis of paracetamol in pharmaceutical formulations based on screen-printed electrodes and carbon nanotubes. Anal. Chim. Acta 2009, 638, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Fernández-la-Villa, A.; Sánchez-Barragán, D.; Pozo-Ayuso, D.F.; Castaño-ÁLvarez, M. Smart portable electrophoresis instrument based on multipurpose microfluidic chips with electrochemical detection. Electrophoresis 2012, 33, 2733–2742. [Google Scholar] [CrossRef] [PubMed]
- Micrux. Available online: http://www.micruxfluidic.com/products-electrochemical_sensors.html (accessed on 2 August 2016).
- Määttänen, A.; Vanamo, U.; Ihalainen, P.; Pulkkinen, P.; Tenhu, H.; Bobacka, J.; Peltonen, J. A low-cost paper-based inkjet-printed platform for electrochemical analyses. Sens. Actuators B Chem. 2013, 177, 153–162. [Google Scholar] [CrossRef]
- Dungchai, W.; Chailapakul, O.; Henry, C.S. A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 2011, 136, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Dequaire, M.; Heller, A. Screen printing of nucleic acid detecting carbon electrodes. Anal. Chem. 2002, 74, 4370–4377. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Li, C.M.; Zhang, Y.F.; Cao, X.D.; Gan, Y. Screen-printed microfluidic device for electrochemical immunoassay. Lab Chip 2007, 7, 1752–1758. [Google Scholar] [CrossRef] [PubMed]
- Olmstead, M.L.; Hamilton, R.G.; Nicholson, R.S. Theory of cyclic voltammetry for a dimerization reaction initiated electrochemically. Anal. Chem. 1969, 41, 260–267. [Google Scholar] [CrossRef]
- Nicholson, R.S.; Shain, I. Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal. Chem. 1964, 36, 706–723. [Google Scholar] [CrossRef]
- Lee, S.H.; Fang, H.Y.; Chen, W.C. Amperometric glucose biosensor based on screen-printed carbon electrodes mediated with hexacyanoferrate–chitosan oligomers mixture. Sens. Actuators B Chem. 2006, 117, 236–243. [Google Scholar] [CrossRef]
- Wang, J.; Tian, B.M.; Nascimento, V.B.; Angnes, L. Performance of screen-printed carbon electrodes fabricated from different carbon inks. Electrochim. Acta 1998, 43, 3459–3465. [Google Scholar] [CrossRef]
- Arrigoni, O.; Tullio, M.C.D. Ascorbic acid: Much more than just an antioxidant. Biochim. Biophys. Acta 2002, 1569, 1–9. [Google Scholar] [CrossRef]
- Shu, B.W.; Zhang, C.S.; Xing, D. Highly sensitive identification of foodborne pathogenic Listeria monocytogenes using single-phase continuous-flow nested PCR microfluidics with on-line fluorescence detection. Microfluid. Nanofluid. 2013, 15, 161–172. [Google Scholar] [CrossRef]
- Yang, L.; Liu, D.; Huang, J.S.; You, T.Y. Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sens. Actuators B Chem. 2014, 193, 166–172. [Google Scholar] [CrossRef]
- Zhang, L. Electrochemical synthesis of self-doped polyaniline and its use to the electrooxidation of ascorbic acid. J. Solid State Electrochem. 2007, 11, 365–371. [Google Scholar] [CrossRef]
- Keeley, G.P.; O’Neill, A.; McEvoy, N.; Peltekis, N.; Coleman, J.N.; Duesberg, G.S. Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene. J. Mater. Chem. 2010, 20, 7864–7869. [Google Scholar] [CrossRef]
- Singh, L.P.; Bhatnagar, J.M. Copper(II) selective electrochemical sensor based on Schiff Base complexes. Talanta 2004, 64, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Pleniceanu, M.; Preda, M.; Muresan, N.; Simoiu, L. New liquid-membrane electrodes used for the determination of copper and nickel. Anal. Lett. 1996, 29, 1485–1496. [Google Scholar] [CrossRef]
- Gupta, V.K.; Goyal, R.N.; Bachheti, N.; Singh, L.P.; Agarwal, S. A copper-selective electrode based on bis (acetylacetone) propylenediimine. Talanta 2005, 68, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.W.; Duan, Y.Y.; Xu, L.; Sun, W. Electrochemical oxidation of 2’-deoxyguanosine-5’-triphosphate on ionic liquid modified carbon paste microelectrode and its sensitive detection. Croat. Chem. Acta 2011, 84, 33–38. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Liu, S.F.; Jiao, K.; Gao, H.W.; Shi, Y.J. Rapid and cost-effective detection of sequence-specific DNA by monitoring the electrochemical response of 2’-deoxyguanosine 5’-triphosphate in a PCR sample. Analyst 2008, 133, 1729–1735. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Z.; Qu, K.M.; Li, Q.F.; Cui, Z.G.; Zhao, J.; Sun, X.M. Recording the reaction process of loop-mediated isothermal amplification (LAMP) by monitoring the voltammetric response of 2’-deoxyguanosine 5’-triphosphate. Electrochemistry 2011, 23, 2438–2445. [Google Scholar] [CrossRef]
- Ai, Z.; Liao, F.; Zhu, L.; Cai, Z.C. Electrochemical behavior and determination of ferulic acid at glass carbon electrode. Chin. J. Appl. Chem. 2006, 23, 566–569. [Google Scholar]
Sources | Substrates | Materials for Construction of EC Cell | Pretreatment a | Ref. |
---|---|---|---|---|
Dropsens | Alumina | Insulating layer | NA | [28] |
Micrux | Glass | SU-8 | NA | [29,30] |
Self-made | Paper | PDMS | Yes | [31] |
Self-made | Paper | SU-8 | Yes | [2] |
Self-made | Paper | Wax | NO | [32] |
Self-made | PET | Hydrophobic ink | NO | [33] |
Self-made | Polyester | UV curable dielectric and PDMS | NO | [34] |
Self-made | PET | NO | NO | This work |
Analyte | EC Method | Linear Range (mM) | R2 | LOD (mM) | Ref. |
---|---|---|---|---|---|
AA | DPV | 0.5–2 | 0.9860 | 0.25 | [41] |
CV | 5–60 | 0.9940 | 5 | [42] | |
CV | 0.4–6 | 0.9940 | 0.12 | [43] | |
SWV | 0.5–10 | 0.9812 | 0.415 | This work | |
Cu2+ | Direct potentiometry | 0.005–100 | N/A | 0.0047 | [44] |
Direct potentiometry | 0.05–100 | N/A | 0.05 | [45] | |
Direct potentiometry | 0.01–100 | N/A | 0.008 | [46] | |
SWASV | 0.0157–0.157 | 0.9996 | 0.011 | This work | |
0.157–1.57 | 0.9994 | ||||
dGTP | DPV | 0.001–0.7 | 0.9980 | 0.001 | [47] |
DPV | 0.002–0.5 | N/A | 0.001 | [48] | |
DPV | 0.004–0.24 | N/A | 0.002 | [49] | |
DPV | 0.01–0.1 | 0.9824 | 0.008 | This work | |
FA | DPV | 0.0154–0.721 | 0.9994 | 0.005 | [8] |
SWASV | 0.005–1 | 0.9882 | 0.001 | [50] | |
CV | 0.0257–0.515 | 0.9979 | 0.024 | This work |
Analyte | Sample | Reference Method a Detected b (±S.D.) (mM) | Proposed Method | ||||
---|---|---|---|---|---|---|---|
Detected (±S.D.) (mM) | Added c (mM) | Found d (mM) | RSD e (%) | Recovery f (%) | |||
AA | Beverage A | 2.051 (±0.114) | 1.976 (±0.118) | 2.0 | 4.086 | 6.4 | 105.5 |
Beverage B | 1.406 (±0.039) | 1.319 (±0.117) | 1.5 | 2.929 | 4.4 | 107.3 | |
Cu2+ | Waste water | 0.040 (±0.002) | 0.042 (±0.004) | 0.05 | 0.095 | 6.3 | 106.0 |
Tap water | <0.0002 | Not detected | 0.016 | 0.016 | 5.5 | / |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Y.; Zhang, C. A Novel One-Step Fabricated, Droplet-Based Electrochemical Sensor for Facile Biochemical Assays. Sensors 2016, 16, 1231. https://doi.org/10.3390/s16081231
Yao Y, Zhang C. A Novel One-Step Fabricated, Droplet-Based Electrochemical Sensor for Facile Biochemical Assays. Sensors. 2016; 16(8):1231. https://doi.org/10.3390/s16081231
Chicago/Turabian StyleYao, Yong, and Chunsun Zhang. 2016. "A Novel One-Step Fabricated, Droplet-Based Electrochemical Sensor for Facile Biochemical Assays" Sensors 16, no. 8: 1231. https://doi.org/10.3390/s16081231
APA StyleYao, Y., & Zhang, C. (2016). A Novel One-Step Fabricated, Droplet-Based Electrochemical Sensor for Facile Biochemical Assays. Sensors, 16(8), 1231. https://doi.org/10.3390/s16081231