A Wirelessly Powered Smart Contact Lens with Reconfigurable Wide Range and Tunable Sensitivity Sensor Readout Circuitry
Abstract
:1. Introduction
2. Related Work
2.1. System and Sensor Chip Design
2.2. Wireless Energy Harvesting and Antenna Design
2.3. Capacitive Sensor Design
3. Materials and Methods
3.1. Design of the Sensor Readout Circuitry
3.2. Contact Lens Assembly Process
4. Results
4.1. Sensor Chip Experiments
4.2. Wirelessly Powered SCL Expeiments
5. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sirinivasan, S.; Subbaraman, L.N. The science of contact lens discomfort. Opt. J. Rev. Optom. 2015, 152, 34–39. [Google Scholar]
- Piso, D.; Veiga-Crespo, P.; Vecino, E. Modern monitoring intraocular pressure sensing devices based on application specific integrated circuits. J. Biomater. Nanobiotechnol. 2012, 3, 301–309. [Google Scholar] [CrossRef]
- Chow, E.Y.; Chlebowski, A.L.; Oqui, P.P. A miniature-implantable RF-wireless active glaucoma intraocular pressure monitor. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Ghaed, H.; Haque, R.; Wieckowski, M.; Kim, Y.; Kim, G.; Fick, D.; Kim, D.; Seok, M.; Wise, K.; et al. A cubic-millimeter energy-autonomous wireless intraocular pressure monitor. In Proceedings of the IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 20–24 February 2011; pp. 310–311.
- Donida, A.; Dato, G.D.; Cunzolo, P.; Sala, M.; Piffaretti, F.; Orsatti, P.; Barrettino, D. A 0.036 mbar circadian and cardiac intraocular pressure sensor for smart implantable lens. In Proceedings of 2015 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 22–26 February 2015; pp. 392–393.
- Leonardi, M.; Pitchon, E.; Bertsch, A.; Renaud, P.; Mermoud, A. Wireless contact lens sensor for intraocular pressure monitoring: Assessment on enucleated pig eyes. Acta Ophthalmol. 2009, 87, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Chiou, J.C.; Huang, Y.C.; Yeh, G.T. A capacitor-based sensor and a contact lens sensing system for intraocular pressure monitoring. J. Micromech. Microeng. 2015, 26, 015001. [Google Scholar] [CrossRef]
- Yeh, G.T.; Wu, T.W.; Tsai, S.W.; Hsu, S.H.; Chiou, J.C. Toward a wireless contact lens sensor system with a micro-capacitor for intraocular pressure monitoring on in vitro porcine eye. In Proceedings of the IEEE Sensors, Busan, Korea, 1–4 November 2015; pp. 1–4.
- Hsu, S.H.; Chiou, J.C.; Liao, Y.T.; Yang, T.S.; Kuei, C.K.; Wu, T.W.; Huang, Y.C. An RFID-based on-lens sensor system for long-term IOP monitoring. In Proceedings of the 37th Annual International Conference IEEE Engineering in Medicine and Biology Society, Milan, Italy, 25–29 August 2015; pp. 7526–7529.
- Chiou, J.C.; Hsu, S.H.; Liao, Y.T.; Huang, Y.C.; Yeh, G.T.; Kuei, C.K.; Dai, D.K. Toward a wirelessly powered on-lens intraocular pressure monitoring system. IEEE J. Biomed. Health Inform. 2016, 20, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- CISC RFID Xplorer Equipment Information. Available online: https://www.cisc.at/products/rfid-xplorer (accessed on 11 December 2016).
- Yang, G.Z. Body Sensor Networks; Springer: London, UK, 2006. [Google Scholar]
- Qing, X.; Goh, C.K.; Chen, Z.N. Eye-shaped segmented reader antenna for near-field UHF RFID applications. Electron. Lett. 2009, 45, 872–873. [Google Scholar] [CrossRef]
- IEEE Standard for Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz; IEEE Std C95.1-2005 (Revision of IEEE Std C95.1-1991); IEEE: New York, NY, USA, April 2006.
- Wessapan, T.; Rattanadecho, P. Specific absorption rate and temperature increase in the human eye due to electromagnetic fields exposure at different frequencies. Int. J. Heat Mass Transf. 2013, 64, 426–435. [Google Scholar] [CrossRef]
- LPS25H MEMS Pressure Sensor. Available online: http://www.st.com/en/mems-and-sensors/lps25h.html (accessed on 11 December 2016).
- ANDY100—RFID Tag Chips that Supply and Communicate with External Sensors. Available online: http://www.farsens.com/en/products/andy100 (accessed on 11 December 2016).
- SL900A EPC Sensor Tag—EPC Sensor Tag and Data Logger IC. Available online: http://ams.com/eng/Products/Wireless-Connectivity/Sensor-Tags-Interfaces/SL900A (accessed on 11 December 2016).
- Cho, N.; Song, S.J.; Kim, S.Y.; Kim, S.H.; Yoo, H.J. A 5.1-μW UHF RFID tag chip integrated with sensors for wireless environmental monitoring. In Proceedings of the 31st European Solid-State Circuits Conference, Grenoble, France, 12–16 September 2005; pp. 279–282.
- Tan, Z.; Daamen, R.; Humbert, A.; Ponomarev, Y.V.; Chae, Y.; Pertijs, M.A.P. A 1.2-V 8.3-nJ CMOS humidity sensor for RFID applications. IEEE J. Solid-State Circuits 2013, 48, 2469–2477. [Google Scholar] [CrossRef]
- Oh, S.; Lee, Y.; Wang, J.; Foo, Z.; Kim, Y.; Jung, W.; Li, Z.; Blaauw, D.; Sylvester, D. A dual-slope capacitance-to-digital converter integrated in an implantable pressure-sensing system. IEEE J. Solid-State Circuits 2015, 50, 1581–1591. [Google Scholar] [CrossRef]
- Tan, Z.; Shalmany, S.H.; Meijer, G.C.M.; Pertijs, M.A.P. An energy-efficient 15-bit capacitive-sensor interface based on period modulation. IEEE J. Solid-State Circuits 2012, 47, 1703–1711. [Google Scholar] [CrossRef]
- Xia, S.; Makinwa, K.; Nihtianov, S. A capacitance-to-digital converter for displacement sensing with 17b resolution and 20 μs conversion time. In Proceedings of 2012 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 19–23 February 2012; pp. 198–199.
- Heidary, A.; Meijer, G.C.M. Features and design constraints for an optimized SC front-end circuit for capacitive sensors with a wide dynamic range. IEEE J. Solid-State Circuits 2008, 43, 1609–1616. [Google Scholar] [CrossRef]
[20] | [21] | [22] | [23] | This Work | |
---|---|---|---|---|---|
Type | Δ-Σ | Dual-Slope | PWM | Δ-Σ | Δ-Σ |
Input Range | 0.54–1.06 pF | 5.3–30.7 pF | 1–6.8 pF | 8.4–11.6 pF | 1.5–120 pF |
Chip Area | 0.28 mm2 | N/A | 0.51 mm2 | 2.6 mm2 | 0.41 mm2 |
Power | 10.3 μW | 110 nW | 210 μW | 14.9 mW | 100 μW |
ENOB | 12.5 bits | 7.05 bits | 15 bits | 15.3 bits | 9.7 bits |
References | [3] | [5] | [6] | This Work |
---|---|---|---|---|
Type | Implantable | Implantable | Wearable | Wearable |
Communication Technique | Active | Load Modulation | N/A | Load Modulation |
Frequency | 2.5 GHz | 13.56 MHz | 27 MHz | 920 MHz |
Power Consumption | 1.4 mW | 1.2 mW | N/A | 110 μW |
Communication Distance | N/A | 4 cm | N/A | 1 cm |
Sensor Type | Capacitive | Resistive | Resistive | Capacitive |
Sensor Range | 5.3 pF–5.75 pF | 5 KΩ–50 KΩ | N/A | 1.5 pF–120 pF |
ENOB | N/A | 8 | N/A | 9.7 |
Chip Size | 0.5 mm2 | 2 mm2 | N/A | 1.58 mm2 |
Communication Protocol | N.A | ISO-15693 | N/A | EPC Class1 Gen2 |
Lens Thickness | N/A | N/A | 400 μm | 200 μm |
Lens Material | N/A | N/A | Silicone | HEMA |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiou, J.-C.; Hsu, S.-H.; Huang, Y.-C.; Yeh, G.-T.; Liou, W.-T.; Kuei, C.-K. A Wirelessly Powered Smart Contact Lens with Reconfigurable Wide Range and Tunable Sensitivity Sensor Readout Circuitry. Sensors 2017, 17, 108. https://doi.org/10.3390/s17010108
Chiou J-C, Hsu S-H, Huang Y-C, Yeh G-T, Liou W-T, Kuei C-K. A Wirelessly Powered Smart Contact Lens with Reconfigurable Wide Range and Tunable Sensitivity Sensor Readout Circuitry. Sensors. 2017; 17(1):108. https://doi.org/10.3390/s17010108
Chicago/Turabian StyleChiou, Jin-Chern, Shun-Hsi Hsu, Yu-Chieh Huang, Guan-Ting Yeh, Wei-Ting Liou, and Cheng-Kai Kuei. 2017. "A Wirelessly Powered Smart Contact Lens with Reconfigurable Wide Range and Tunable Sensitivity Sensor Readout Circuitry" Sensors 17, no. 1: 108. https://doi.org/10.3390/s17010108
APA StyleChiou, J. -C., Hsu, S. -H., Huang, Y. -C., Yeh, G. -T., Liou, W. -T., & Kuei, C. -K. (2017). A Wirelessly Powered Smart Contact Lens with Reconfigurable Wide Range and Tunable Sensitivity Sensor Readout Circuitry. Sensors, 17(1), 108. https://doi.org/10.3390/s17010108