Smart Bandwidth Assignation in an Underlay Cellular Network for Internet of Vehicles
Abstract
:1. Introduction
2. Literature
3. Problem Definition
3.1. System Model
Algorithm 1: Clustering algorithm. |
3.2. Problem Formulation
4. Methodology
- Pairing Problem: The first one is the pairing problem, in which in order to determine if a C-UE and a V-UE can share the same RB to transmit their messages, we calculate the minimum distance there should be between a C-UE and a V-UE transmitter to mitigate the interference. Knowing this distance, the eNodeB can select which are all the possible pairs.
- Transmission Power Allocation: After solving the pairing problem, we continue with the second subproblem which is the transmission power assignation for each possible pair of C-UE and V-UE transmissions. Thereby, we have a bipartite graph with all the possible pairs with their respective transmission powers. With this transmission powers, it is easy to calculate the achievable throughput of the pair of communications which will be considered the weight of each pair in the bipartite graph.
- RB Assignation: Having reached this point, we move to the third subproblem, where we end up with the RB assignation. To solve this combinatorial optimization subproblem we have design a specific parallel meta-heuristic.This subproblems are explained in the following subsections.
4.1. Minimum Distance between C-UE and V-UE Transmitter
4.2. Transmission Power Allocation
4.3. RB Allocation: XueBlockSolver Algorithm
Algorithm 2: Pseudocode of the proposed MP-BSA. |
5. Proposed Solution Tests and Validation
5.1. Scenarios and Parameters
5.2. Performance Metrics and Baseline Methods
- Throughput, defined as the average number of bits per second transmitted through users’ links. In other words, the sum of the data rates that are delivered by all users considered in the tested scenarios.
- Spectral Efficiency, defined as the average number of bytes transmitted per RB. Spectral Efficiency is a key metric as the radio spectrum is a limited resource. As it was introduced in the problem definition section, the main aim of our proposal is to define an underlay RRM capable of increasing the spectral efficiency of the cellular networks for giving access to a higher number of users with the same resources.
- Energy Efficiency, defined as the average number of bytes transmitted per Watt consumed. This metric evaluates how the RRM methodology takes benefit from the transmission power used.
- Results obtained from V2V communication links to analyze the communication performance offered to V-UEs by the RRM methodology.
- Results obtained from all the communication links to evaluate the communication performance offered to all the users of the scenario by the proposed RRM methodology.
- Underlay RRM methodology which maximizes the sum rate of both C-UE and V-UE using the possibility of sharing both users the same RB for the transmission.
- Overlay RRM methodology which maximize the sum rate of users using one RB for each transmission with the maximum transmission power.
5.3. Simulation Results
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Acronyms List
CAM | Cooperative Awareness Message |
CH | Cluster Head |
C-ITS | Cooperative-ITS |
CM | Cluster Member |
CSMA | Carrier Sense Multiple Access |
C-UE | Common User Equipment |
DL | downlink |
D2D | Device-to-Device |
ETSI | European Telecommunications Standards Institute |
FCD | Floating Car Data |
FDD | Frequency Division Duplexing |
HA | Hungarian Algorithm |
I2V | Infrastructure-to-Vehicle |
IoT | Internet of Things |
IoV | Internet of Vehicles |
ITS | Intelligent Transportation Systems |
LOS | Line of Sight |
LTE-A | LTE-Advanced |
LTE | Long Term Evolution |
MAC | Medium Access Control |
MPC | Minimum Rate Oriented Power Control |
QoS | Quality of Service |
RB | Resource Block |
RBAP | Resource Block Assignation Problem |
RRM | Radio Resource Management |
RSRP | Reference Signal Received Power |
SC-FDMA | Single Carrier Frequency Divison Multiple Access |
SINR | Signal-to-Interference-plus-Noise Ratio |
SPC | Sum Rate Oriented Power Control |
SPS | Semi-Persistent Scheduling |
UE | User Equipment |
UL | uplink |
V2I | Vehicle-to-Infrastructure |
V2V | Vehicle-to-Vehicle |
V2X | Vehicle-to-Everything |
VANET | Vehicular Ad Hoc Network |
V-UE | Vehicular User Equipment |
VRU | Vulnerable Road User |
WI | Work Item |
References
- McKinsey & Company. The Road to 2020 and Beyond What’s Driving the Global Automotive Industry; McKinsey & Company: New York, NY, USA, 2013. [Google Scholar]
- Hernandez-Jayo, U.; De-la Iglesia, I.; Perez, J. V-Alert: Description and Validation of a Vulnerable Road User Alert System in the Framework of a Smart City. Sensors 2015, 15, 18480–18505. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, C.; Zhang, J.; Zhou, M.; Jiang, C. Improved Rule Installation for Real-Time Query Service in Software-Defined Internet of Vehicles. IEEE Trans. Intell. Transp. Syst. 2017, 18, 225–235. [Google Scholar] [CrossRef]
- Kombate, D.; Wanglina. The Internet of Vehicles Based on 5G Communications. In Proceedings of the 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Chengdu, China, 15–18 December 2016; pp. 445–448. [Google Scholar]
- Popovski, P. Ultra-reliable communication in 5G wireless systems. In Proceedings of the 2014 1st International Conference on 5G for Ubiquitous Connectivity (5GU), Akaslompolo, Finland, 26–28 November 2014; pp. 146–151. [Google Scholar]
- Mir, Z.H.; Filali, F. LTE and IEEE 802.11p for vehicular networking: A performance evaluation. EURASIP J. Wirel. Commun. Netw. 2014, 2014, 89. [Google Scholar]
- Cheng, X.; Yang, L.; Shen, X. D2D for Intelligent Transportation Systems: A Feasibility Study. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1784–1793. [Google Scholar] [CrossRef]
- Khelil, A.; Soldani, D. On the suitability of Device-to-Device communications for road traffic safety. In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014; pp. 224–229. [Google Scholar]
- RP-152293 Support for V2V Services Based on LTE Sidelink. Available online: http://portal.3gpp.org/ngppapp/CreateTDoc.aspx?mode=view&contributionUid=RP-152293 (accessed on 26 September 2017).
- Fodor, G.; Dahlman, E.; Mildh, G.; Parkvall, S.; Reider, N.; Miklós, G.; Turányi, Z. Design aspects of network assisted device-to-device communications. IEEE Commun. Mag. 2012, 50, 170–177. [Google Scholar] [CrossRef]
- Phunchongharn, P.; Hossain, E.; Kim, D.I. Resource allocation for device-to-device communications underlaying LTE-advanced networks. IEEE Wirel. Commun. 2013, 20, 91–100. [Google Scholar] [CrossRef]
- Asadi, A.; Wang, Q.; Mancuso, V. A Survey on Device-to-Device Communication in Cellular Networks. IEEE Commun. Surv. Tutor. 2014, 16, 1801–1819. [Google Scholar] [CrossRef]
- Feng, D.; Lu, L.; Yi, Y.; Li, G.Y.; Feng, G.; Li, S. Device-to-Device Communications Underlaying Cellular Networks. IEEE Trans. Commun. 2013, 61, 3541–3551. [Google Scholar] [CrossRef]
- Botsov, M.; Klügel, M.; Kellerer, W.; Fertl, P. Location dependent resource allocation for mobile device-to-device communications. In Proceedings of the 2014 IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 6–9 April 2014; pp. 1679–1684. [Google Scholar]
- Xing, W.; Wang, N.; Wang, C.; Liu, F.; Ji, Y. Resource Allocation Schemes for D2D Communication Used in VANETs. In Proceedings of the 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), Vancouver, BC, Canada, 14–17 September 2014; pp. 1–6. [Google Scholar]
- Ren, Y.; Liu, F.; Liu, Z.; Wang, C.; Ji, Y. Power Control in D2D-Based Vehicular Communication Networks. IEEE Trans. Veh. Technol. 2015, 64, 5547–5562. [Google Scholar] [CrossRef]
- Sun, W.; Strom, E.; Brannstrom, F.; Sou, K.; Sui, Y. Radio Resource Management for D2D-based V2V Communication. IEEE Trans. Veh. Technol. 2016, 65, 6636–6650. [Google Scholar] [CrossRef]
- Zulhasnine, M.; Huang, C.; Srinivasan, A. Efficient resource allocation for device-to-device communication underlaying LTE network. In Proceedings of the 2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications, Niagara Falls, NU, Canada, 11–13 October 2010; pp. 368–375. [Google Scholar]
- Kuhn, H.W. The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 1955, 2, 83–97. [Google Scholar] [CrossRef]
- Sun, W.; Yuan, D.; Strom, E.; Brannstrom, F. Cluster-Based Radio Resource Management for D2D-Supported Safety-Critical V2X Communications. IEEE Trans. Wirel. Commun. 2016, 15, 2756–2769. [Google Scholar] [CrossRef]
- Almoustafa, S.; Hanafi, S.; Mladenović, N. New exact method for large asymmetric distance-constrained vehicle routing problem. Eur. J. Oper. Res. 2013, 226, 386–394. [Google Scholar] [CrossRef]
- Dütting, P.; Henzinger, M.; Weber, I. Sponsored search, market equilibria, and the Hungarian Method. Inf. Process. Lett. 2013, 113, 67–73. [Google Scholar] [CrossRef]
- Kaufman, B.; Lilleberg, J.; Aazhang, B. Spectrum sharing scheme between cellular users and ad-hoc device-to-device users. IEEE Trans. Wirel. Commun. 2013, 12, 1038–1049. [Google Scholar] [CrossRef]
- Glover, F.W.; Kochenberger, G.A. Handbook of Metaheuristics; Springer Science & Business Media: New York, NY, USA, 2006; Volume 57. [Google Scholar]
- BoussaïD, I.; Lepagnot, J.; Siarry, P. A Survey on Optimization Metaheuristics. Inf. Sci. 2013, 237, 82–117. [Google Scholar] [CrossRef]
- Lin, X.; Andrews, J.G.; Ghosh, A.; Ratasuk, R. An overview of 3GPP device-to-device proximity services. IEEE Commun. Mag. 2014, 52, 40–48. [Google Scholar] [CrossRef]
- Hernandez-Jayo, U.; Mammu, A.S.K.; De-la Iglesia, I. Reliable Communication in Cooperative Ad hoc Networks. In Contemporary Issues in Wireless Communications; InTech: Rijeka, Croatia, 2014. [Google Scholar]
- European Telecommunications Standards Institute (ETSI). ETSI TS 102 637-2 V1.2.1 (2011-03) Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service; ETSI: Sophia Antipolis, France, 2011. [Google Scholar]
- Du, D.Z.; Pardalos, P.M. Handbook of Combinatorial Optimization: Supplement; Springer Science & Business Media: New York, NY, USA, 2013; Volume 1. [Google Scholar]
- Kasperski, A.; Zieliński, P. Combinatorial optimization problems with uncertain costs and the OWA criterion. Theor. Comput. Sci. 2015, 565, 102–112. [Google Scholar] [CrossRef]
- Bezerra, L.C.; López-Ibáñez, M.; Stützle, T. Automatic design of evolutionary algorithms for multi-objective combinatorial optimization. In Parallel Problem Solving from Nature; Springer: Cham, Switzerland, 2014; pp. 508–517. [Google Scholar]
- Levin, M.S. System Configuration and Combinatorial Optimization. In Modular System Design and Evaluation; Springer: Berlin, Germany, 2015; pp. 89–109. [Google Scholar]
- Colbourn, C.J. CRC Handbook of Combinatorial Designs; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Kirkpatrick, S.; Gellat, C.; Vecchi, M. Optimization by simmulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Glover, F. Tabu search, part I. ORSA J. Comput. 1989, 1, 190–206. [Google Scholar] [CrossRef]
- Goldberg, D. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley Professional: Boston, MA, USA, 1989. [Google Scholar]
- Dorigo, M.; Blum, C. Ant colony optimization theory: A survey. Theor. Comput. Sci. 2005, 344, 243–278. [Google Scholar] [CrossRef]
- Osaba, E.; Carballedo, R.; Diaz, F.; Onieva, E.; Masegosa, A.; Perallos, A. Good practice proposal for the implementation, presentation, and comparison of metaheuristics for solving routing problems. Neurocomputing 2017. [Google Scholar] [CrossRef]
- Larrañaga, P.; Kuijpers, C.M.H.; Murga, R.H.; Inza, I.; Dizdarevic, S. Genetic algorithms for the travelling salesman problem: A review of representations and operators. Artif. Intell. Rev. 1999, 13, 129–170. [Google Scholar] [CrossRef]
- Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation. Available online: http://www.etsi.org/deliver/etsi_ts/136200_136299/136211/11.05.00_60/ts_136211v110500p.pdf (accessed on 26 September 2017).
- Study on LTE-based V2X Services. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2934 (accessed on 26 September 2017).
- 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E -UTRA physical layer aspects (Release 9). Available online: http://www.qtc.jp/3GPP/Specs/36814-900.pdf (accessed on 26 September 2017).
Parameter | Value |
---|---|
Carrier Frequency | 2 GHz |
Number of RBs | 100 |
RB bandwidth | 180 kHz |
Scenario | 1 km highway |
Number of users | 50 |
V-UEs velocity | 140 kmph |
Channel model | Line of Sight |
V2V coverage radio | 100 m |
Number of Scenarios | 9 |
Simulation time | 2 s |
Number of runs per scenario | 6 |
Frame size | 1 ms |
125 mW | |
−162.5 dBm | |
0.8 |
Scenario | C-UEs | V-UEs |
---|---|---|
1 | 5 | 45 |
2 | 10 | 40 |
3 | 15 | 35 |
4 | 20 | 30 |
5 | 25 | 25 |
6 | 30 | 20 |
7 | 35 | 15 |
8 | 40 | 10 |
9 | 45 | 5 |
CUE’s Message Size (Bytes) | Underlay V2V Throughput (Gbps) | Our Approach V2V Throughput (Gbps) | Overlay V2V Throughput (Gbps) |
---|---|---|---|
100 | 1.9798 | 2.2196 | 1.9911 |
200 | 1.9681 | 2.2081 | 1.9744 |
300 | 1.9684 | 2.1794 | 1.9757 |
400 | 1.9676 | 2.1745 | 1.9801 |
500 | 1.9650 | 2.1674 | 1.9820 |
600 | 1.9635 | 2.1700 | 1.9746 |
700 | 1.9556 | 2.1634 | 1.9600 |
800 | 1.9498 | 2.1617 | 1.9623 |
900 | 1.9636 | 2.1783 | 1.9613 |
1000 | 1.9586 | 2.1671 | 1.9548 |
1100 | 1.9558 | 2.1698 | 1.9579 |
1200 | 1.9491 | 2.1673 | 1.9521 |
1300 | 1.9542 | 2.1688 | 1.9526 |
1400 | 1.9489 | 2.1670 | 1.9546 |
1500 | 1.9474 | 2.1652 | 1.9456 |
Media | 1.9597 | 2.1752 | 1.9653 |
CUE’s Message Size (Bytes) | Underlay Total Throughput (Gbps) | Our Approach Total Throughput (Gbps) | Overlay Total Throughput (Gbps) |
---|---|---|---|
100 | 2.6870 | 2.9351 | 2.6186 |
200 | 3.0729 | 3.3967 | 2.8166 |
300 | 3.3820 | 3.7943 | 3.0143 |
400 | 3.6363 | 4.1614 | 3.1914 |
500 | 3.8890 | 4.5104 | 3.3809 |
600 | 4.1432 | 4.8688 | 3.5563 |
700 | 4.3750 | 5.2224 | 3.7543 |
800 | 4.5923 | 5.5784 | 3.9307 |
900 | 4.8477 | 5.9575 | 4.1163 |
1000 | 5.0782 | 6.3053 | 4.3020 |
1100 | 5.2871 | 6.6725 | 4.4930 |
1200 | 5.5013 | 7.0332 | 4.7124 |
1300 | 5.7040 | 7.3952 | 4.8591 |
1400 | 5.8899 | 7.7527 | 5.0409 |
1500 | 6.0869 | 8.1100 | 5.2257 |
Media | 4.5448 | 5.5796 | 3.9342 |
CUE’s Message Size (Bytes) | Underlay V2V Spectral Efficiency (Bytes) | Our Approach V2V Spectral Efficiency (Bytes) | Overlay V2V Spectral Efficiency (Bytes) |
---|---|---|---|
100 | 75.5158 | 111.5009 | 82.0601 |
200 | 74.5242 | 105.0593 | 82.1765 |
300 | 74.6291 | 102.4324 | 82.4734 |
400 | 74.5778 | 101.6482 | 82.4722 |
500 | 74.6811 | 101.2451 | 83.0456 |
600 | 74.6977 | 101.4136 | 83.2602 |
700 | 74.5434 | 101.3483 | 83.2362 |
800 | 74.2527 | 100.9259 | 83.1750 |
900 | 73.9347 | 101.0398 | 83.1834 |
1000 | 73.9485 | 99.6729 | 83.6675 |
1100 | 73.8607 | 98.2533 | 83.3569 |
1200 | 73.5458 | 97.9194 | 83.1306 |
1300 | 73.1310 | 97.9186 | 83.2180 |
1400 | 73.5731 | 97.1496 | 83.5048 |
1500 | 73.7803 | 96.5138 | 83.6841 |
Media | 74.2130 | 100.9361 | 83.0430 |
CUE’s Message Size (Bytes) | Underlay V2V Spectral Efficiency (Bytes) | Our Approach V2V Spectral Efficiency (Bytes) | Overlay V2V Spectral Efficiency (Bytes) |
---|---|---|---|
100 | 95.7937 | 129.2273 | 82.1711 |
200 | 99.1588 | 133.1300 | 83.8041 |
300 | 102.5021 | 134.4520 | 84.8239 |
400 | 103.5603 | 130.0844 | 85.0603 |
500 | 104.5878 | 127.0249 | 85.6566 |
600 | 104.7855 | 122.7010 | 85.9722 |
700 | 105.0782 | 119.7708 | 86.3758 |
800 | 104.3845 | 116.7125 | 86.3510 |
900 | 104.8364 | 114.8894 | 86.6161 |
1000 | 104.5595 | 113.0139 | 86.5990 |
1100 | 104.4074 | 111.5848 | 86.8759 |
1200 | 104.9000 | 110.9248 | 87.2326 |
1300 | 104.4592 | 109.7956 | 87.4499 |
1400 | 105.0987 | 109.2632 | 87.5854 |
1500 | 104.7921 | 108.1939 | 87.6160 |
Media | 103.5269 | 119.3846 | 86.0127 |
CUE’s Message Size (Bytes) | Underlay V2V Energy Efficiency (Bytes) | Our Approach V2V Energy Efficiency (Bytes) | Overlay V2V Energy Efficiency (Bytes) |
---|---|---|---|
100 | 17.905 | 25.398 | 19.747 |
200 | 16.839 | 22.829 | 18.611 |
300 | 16.755 | 22.859 | 18.645 |
400 | 18.610 | 25.262 | 21.175 |
500 | 15.699 | 20.797 | 17.476 |
600 | 17.307 | 22.655 | 19.176 |
700 | 17.837 | 23.179 | 19.706 |
800 | 16.221 | 21.363 | 18.259 |
900 | 18.305 | 23.995 | 20.832 |
1000 | 19.625 | 23.778 | 22.438 |
1100 | 14.714 | 18.259 | 16.685 |
1200 | 15.911 | 19.996 | 18.002 |
1300 | 14.817 | 19.092 | 16.931 |
1400 | 16.303 | 20.620 | 18.934 |
1500 | 17.384 | 20.643 | 19.225 |
Media | 16.949 | 22.048 | 19.056 |
CUE’s Message Size (Bytes) | Underlay V2V Energy Efficiency (Bytes) | Our Approach V2V Energy Efficiency (Bytes) | Overlay V2V Energy Efficiency (Bytes) |
---|---|---|---|
100 | 4.4618 | 6.7902 | 5.3890 |
200 | 3.9224 | 5.7585 | 5.0450 |
300 | 3.8978 | 5.4545 | 4.9905 |
400 | 3.7932 | 5.0135 | 4.8062 |
500 | 3.6656 | 4.7267 | 4.5924 |
600 | 3.6905 | 4.6072 | 4.5828 |
700 | 3.4600 | 4.1699 | 4.2278 |
800 | 3.3731 | 4.0570 | 4.2021 |
900 | 3.4523 | 4.0740 | 4.1365 |
1000 | 3.2847 | 3.7835 | 3.8812 |
1100 | 3.4272 | 3.8718 | 4.0592 |
1200 | 3.2558 | 3.6018 | 3.8385 |
1300 | 3.2977 | 3.5524 | 3.8314 |
1400 | 3.2870 | 3.5393 | 3.7257 |
1500 | 3.1950 | 3.3954 | 3.6664 |
Media | 3.5643 | 4.4264 | 4.3317 |
Metrics | Underlay | Our Approach | Overlay |
---|---|---|---|
V2V Throughput (Gbps) | 1.9597 | 2.1752 | 1.9653 |
Total Throughput (Gbps) | 4.5448 | 5.5796 | 3.9342 |
V2V Spectral Efficiency (bytes) | 74.2130 | 100.9361 | 83.0430 |
Total Spectral Efficiency (bytes) | 103.5269 | 119.3846 | 86.0127 |
V2V Energy Efficiency (Gb/W) | 16.949 | 22.048 | 19.056 |
Total Energy Efficiency (Gb/W) | 3.5643 | 4.4264 | 4.43317 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De la Iglesia, I.; Hernandez-Jayo, U.; Osaba, E.; Carballedo, R. Smart Bandwidth Assignation in an Underlay Cellular Network for Internet of Vehicles. Sensors 2017, 17, 2217. https://doi.org/10.3390/s17102217
De la Iglesia I, Hernandez-Jayo U, Osaba E, Carballedo R. Smart Bandwidth Assignation in an Underlay Cellular Network for Internet of Vehicles. Sensors. 2017; 17(10):2217. https://doi.org/10.3390/s17102217
Chicago/Turabian StyleDe la Iglesia, Idoia, Unai Hernandez-Jayo, Eneko Osaba, and Roberto Carballedo. 2017. "Smart Bandwidth Assignation in an Underlay Cellular Network for Internet of Vehicles" Sensors 17, no. 10: 2217. https://doi.org/10.3390/s17102217
APA StyleDe la Iglesia, I., Hernandez-Jayo, U., Osaba, E., & Carballedo, R. (2017). Smart Bandwidth Assignation in an Underlay Cellular Network for Internet of Vehicles. Sensors, 17(10), 2217. https://doi.org/10.3390/s17102217