Automated Dielectrophoretic Tweezers-Based Force Spectroscopy System in a Microfluidic Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Structure
2.2. Program Structure of the Automatic System for DFS
2.3. Fabrication Process of the DFS Chip and Sample Preparation
2.4. Operation of the DEP Force
2.5. Experimental Procedure of the Automatic System for DFS
3. Results and Discussion
3.1. Synchronization of the Automatic System for DFS
3.2. Verification of the Reliability and Stability of the Automatic System for DFS
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Neuman, K.C.; Nagy, A. Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 2008, 5, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Rief, M.; Oesterhelt, F.; Heymann, B.; Gaub, H.E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 1997, 275, 1295–1297. [Google Scholar] [CrossRef] [PubMed]
- Meiners, J.C.; Quake, S.R. Femtonewton force spectroscopy of single extended DNA molecules. Phys. Rev. Lett. 2000, 84, 5014. [Google Scholar] [CrossRef] [PubMed]
- Marti, O.; Elings, V.; Haugan, M.; Bracker, C.E.; Schneir, J.; Drake, B.; Gould, S.A.C.; Gurley, J.; Hellemans, L.; Shaw, K.; et al. Scanning probe microscopy of biological samples and other surfaces. J. Microsc. 1988, 152, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Engel, A. Biological applications of scanning probe microscopes. Annu. Rev. Biophys. Biophys. Chem. 1991, 20, 79–108. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, S.M. Biological scanning probe microscopy comes of age. Biophys. J. 1994, 67, 2134. [Google Scholar] [CrossRef]
- Bustamante, J.O.; Liepins, A.; Prendergast, R.A.; Hanover, J.A.; Oberleithner, H. Patch clamp and atomic force microscopy demonstrate TATA-binding protein (TBP) interactions with the nuclear pore complex. J. Membr. Biol. 1995, 146, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Yang, J.; Somlyo, A.P. Biological atomic force microscopy: From microns to nanometers and beyond. Annu. Rev. Cell Dev. Biol. 1995, 11, 241–265. [Google Scholar] [CrossRef] [PubMed]
- Lang, M.J.; Asbury, C.L.; Shaevitz, J.W.; Block, S.M. An automated two-dimensional optical force clamp for single molecule studies. Biophys. J. 2002, 83, 491–501. [Google Scholar] [CrossRef]
- Leake, M.C.; Wilson, D.; Gautel, M.; Simmons, R.M. The elasticity of single titin molecules using a two-bead optical tweezers assay. Biophys. J. 2004, 87, 1112–1135. [Google Scholar] [CrossRef] [PubMed]
- Sacconi, L.; Tolić-Norrelykke, I.M.; Stringari, C.; Antolini, R.; Pavone, F.S. Optical micromanipulations inside yeast cells. Appl. Opt. 2005, 44, 2001–2007. [Google Scholar] [CrossRef] [PubMed]
- Park, I.S.; Eom, K.; Son, J.; Chang, W.J.; Park, K.; Kwon, T.; Yoon, D.S.; Bashir, R.; Lee, S.W. Microfluidic multifunctional probe array dielectrophoretic force spectroscopy with wide loading rates. ACS Nano 2012, 6, 8665–8673. [Google Scholar] [CrossRef] [PubMed]
- Zocchi, G. Force measurements on single molecular contacts through evanescent wave microscopy. Biophys. J. 2001, 81, 2946–2953. [Google Scholar] [CrossRef]
- Yokokawa, R.; Sakai, Y.; Okonogi, A.; Kanno, I.; Kotera, H. Measuring the force of adhesion between multiple kinesins and a microtubule using the fluid force produced by microfluidic flow. Microfluid. Nanofluid. 2011, 519–527. [Google Scholar] [CrossRef]
- Lee, S.W.; Li, H.; Bashir, R. Dielectrophoretic tweezers for examining particle-surface interactions within microfluidic devices. Appl. Phys. Lett. 2007, 90, 223902–223904. [Google Scholar] [CrossRef]
- Baek, S.H.; Chang, W.J.; Baek, J.Y.; Yoon, D.S.; Bashir, R.; Lee, S.W. Dielectrophoretic technique for measurement of chemical and biological interactions. Anal. Chem. 2009, 81, 7737–7742. [Google Scholar] [CrossRef] [PubMed]
- Kwak, T.J.; Lee, J.W.; Yoon, D.S.; Lee, S.W. Investigation of the Binding Force between Protein A and Immunoglobulin G Using Dielectrophoretic (DEP) Tweezers Inside a Microfluidic Chip. J. Biomed. Eng. Res. 2013, 34, 123–128. [Google Scholar] [CrossRef]
- Park, I.S.; Kwak, T.J.; Lee, G.; Son, M.; Choi, J.W.; Choi, S.; Nam, K.; Lee, S.-Y.; Chang, W.-J.; Eom, K.; et al. Biaxial dielectrophoresis force spectroscopy: A stoichiometric approach for examining intermolecular weak binding interactions. ACS Nano 2016, 10, 4011–4019. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Lee, G.; Park, I.S.; Son, M.; Kim, W.; Lee, H.; Lee, S.-Y.; Na, S.; Yoon, D.S.; et al. Detection of silver ions using dielectrophoretic tweezers-based force spectroscopy. Anal. Chem. 2016, 88, 10867–10875. [Google Scholar] [CrossRef] [PubMed]
- Javanmard, M.; Emaminejad, S.; Dutton, R.W.; Davis, R.W. Use of negative dielectrophoresis for selective elution of protein-bound particles. Anal. Chem. 2012, 84, 1432–1438. [Google Scholar] [CrossRef] [PubMed]
- Emaminejad, S.; Javanmard, M.; Dutton, R.W.; Davis, R.W. Smart Surface for Elution of Protein–Protein Bound Particles: Nanonewton Dielectrophoretic Forces Using Atomic Layer Deposited Oxides. Anal. Chem. 2012, 84, 10793–10801. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Barrett, M.J.; Oliver, P.M.; Creetin, D.; Vezenov, D. Dielectrophoretic tweezers as a platform for molecular force spectroscopy in a highly parallel format. Lab Chip 2011, 11, 4248–4259. [Google Scholar] [CrossRef] [PubMed]
- Haugstad, G. Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Sarangapani, K.K.; Qian, J.; Chen, W.; Zarnitsyna, V. I.; Mehta, P.; Yago, T.; McEver, R.P.; Zhu, C. Regulation of catch bonds by rate of force application. J. Biol. Chem. 2011, 286, 32749–32761. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.H.; Lee, J.; Nam, K.; Park, I.S.; Son, M.; Ko, H.; Lee, S.; Yoon, D.S.; Chang, W.-J.; Lee, S.Y.; et al. Automated Dielectrophoretic Tweezers-Based Force Spectroscopy System in a Microfluidic Device. Sensors 2017, 17, 2272. https://doi.org/10.3390/s17102272
Kim MH, Lee J, Nam K, Park IS, Son M, Ko H, Lee S, Yoon DS, Chang W-J, Lee SY, et al. Automated Dielectrophoretic Tweezers-Based Force Spectroscopy System in a Microfluidic Device. Sensors. 2017; 17(10):2272. https://doi.org/10.3390/s17102272
Chicago/Turabian StyleKim, Min Hyung, Jeongjick Lee, Kihwan Nam, In Soo Park, Myeonggu Son, Hyunchul Ko, Sangyoup Lee, Dae Sung Yoon, Woo-Jin Chang, Sei Young Lee, and et al. 2017. "Automated Dielectrophoretic Tweezers-Based Force Spectroscopy System in a Microfluidic Device" Sensors 17, no. 10: 2272. https://doi.org/10.3390/s17102272
APA StyleKim, M. H., Lee, J., Nam, K., Park, I. S., Son, M., Ko, H., Lee, S., Yoon, D. S., Chang, W. -J., Lee, S. Y., Yoon, Y. R., & Lee, S. W. (2017). Automated Dielectrophoretic Tweezers-Based Force Spectroscopy System in a Microfluidic Device. Sensors, 17(10), 2272. https://doi.org/10.3390/s17102272