An IoT-Based Computational Framework for Healthcare Monitoring in Mobile Environments
Abstract
:1. Introduction
2. Related Work
2.1. Biomedical Sensing and Health Monitoring
2.2. Findings
- The number of wearables, mobile devices and other connected things are increasing significantly. This increases the possibilities of using new types of applications that take advantage of their ubiquitous sensing and communication possibilities.
- The utilization of user portable things for aiding biomedical sensing is growing. Several works propose using the devices for medical monitoring. In addition, the combination of wearables and mobile devices allow designing biomedical sensing systems for self-monitoring in a comfortable way.
- The complexity of advanced applications means they are expensive to run only on wearables and/or acquisition devices. The trend of upgrading the overall performance of complex applications used in distributed environments (such as IoT, mobile apps, etc.) is finding ways of providing additional computing power to mobile devices and ‘things’.
- The physical effort monitoring in professional sports practice is a very useful tool to understand athletic performance and how the athlete’s body works. The new technology is a key enabler for this purpose.
3. Distributed Computational Framework
3.1. Health Monitoring Environments
3.2. Framework Specification
- 𝕋 is the vertex set and represents the set of application’s tasks required for data acquisition, processing and monitoring. Then, the application is broken down into a list of tasks: 𝕋 = {t1, t2, …, tn}
- 𝔽 is the edge set and represents the data flows exchanged between the tasks. The data flows set the precedence between the tasks and the volume of exchanged data. F(i, j) ∈ 𝔽 defines the volume of data exchanged between the tasks i and j.
- Let B be the set of devices or ‘things’ of the BAN. These devices are worn by users. Their work consists in sensing and communicating the data to other devices. In addition, they may have some computing power.
- Let M be the set of available computers outside the BAN of the user. This set includes the computers and other mobile devices that have processing capabilities. Thus, the devices of this set can show the data and process it.
- Let E be a set of external sensors. This set includes another type of external devices to the user for sensing other information for the application. For example, environmental conditions such as ambient humidity and temperature.
4. Case Study
4.1. Case Description
4.2. Infrastructure Deployment
- The chest strap sensor is a wearable biomedical sensor that reads athletes’ heart rates. Each athlete should wear this sensor for acquiring the most relevant data. The device basically consists of a chest strap sensor that monitors the heart rate and a communication module for sending the data to the display devices. This device does not have computing capabilities due to size and battery constraints. Thus, the chest strap sensor is limited to sensing the heart rate per second and sending it to the athlete’s smartwatch. A Bluetooth link is established to accomplish this goal.
- The smartwatch is a modern wearable basically designed for display purposes. The device can acquire other data such as the field position, the distance covered, GPS and altitude position and the number of minutes played. The wearable has good communication features. Usually, it supports several communication standards such as Bluetooth, WLAN and Global System for Mobile Communications (GSM) modes. In our proposal, each smartwatch receives the athlete’s heart rate from the chest strap sensor and makes a data package that includes the heart rate, GPS coordinates (position in the field), covered distance and number of minutes played. This data package is sent to the mobile devices of the medical staff repeating this process each second. The communication between them is by means of a dedicated WLAN network.
- B = {b1: chest strap sensor; b2: smartwatch}
- M = {m1: coach’s tablet; m2: medical staff’s mobile computer}
- E = {e1: environmental sensor; e2: thermometer}
4.3. Distributed Processing
- Application context A consists of a single athlete in a training session.
- Application context B consists of a training session of a group of 11 athletes. In this case, all footballers must be analyzed at the same time.
- Application context C represents a football match where there are two teams of 11 athletes and four referees to monitor. That is 26 athletes in total.
4.4. Results and Discussion
5. Conclusions and Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
References
- García, M. The Impact of IoT on Economic Growth: A Multifactor Productivity Approach. In Proceedings of the International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 7–9 December 2015. [Google Scholar]
- Visvizi, A.; Mazzucelli, C.; Lytras, M. Irregular migratory flows: Towards an ICTs’ enabled integrated framework for resilient urban systems. J. Sci. Technol. Policy Manag. 2017, 8, 227–242. [Google Scholar] [CrossRef]
- Silva, B.M.; Rodrigues, J.J.; de la Torre Díez, I.; López-Coronado, M.; Saleem, K. Mobile-health: A review of current state in 2015. J. Biomed. Inform. 2015, 56, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Gil, D.; Ferrández, A.; Mora-Mora, H.; Peral, J. Internet of Things: A Review of Surveys Based on Context Aware Intelligent Services. Sensors 2016, 16, 1069. [Google Scholar] [CrossRef] [PubMed]
- Colom, J.F.; Mora, H.; Gil, D.; Signes-Pont, M.T. Collaborative building of behavioural models based on internet of things. Comput. Electr. Eng. 2016, 58, 385–396. [Google Scholar] [CrossRef]
- Lanza Calderón, J.; Sotres García, P.; Sánchez González, L.; Galache López, J.A.; Santana Martínez, J.R.; Gutiérrez Polidura, V.; Muñoz Gutiérrez, L. Managing Large Amounts of Data Generated by a Smart City Internet of Things Deployment. Int. J. Semant. Web Inf. Syst. 2016, 12. [Google Scholar] [CrossRef]
- Llaves, A.; Corcho, O.; Taylor, P.; Taylor, K. Enabling RDF Stream Processing for Sensor Data Management in the Environmental Domain. Int. J. Semant. Web Inf. Syst. 2016, 12. [Google Scholar] [CrossRef]
- Vujović, V.; Maksimović, M. Raspberry Pi as a Sensor Web node for home automation. Comput. Electr. Eng. 2015, 44, 153–171. [Google Scholar] [CrossRef]
- Gilart-Iglesias, V.; Mora, H.; Pérez-delHoyo, R.; García-Mayor, C. A computational method based on radio frequency technologies for the analysis of accessibility of disabled people in sustainable cities. Sustainability 2015, 7, 14935–14963. [Google Scholar] [CrossRef] [Green Version]
- Ferrández-Pastor, F.J.; Mora-Mora, H.; Sánchez-Romero, J.L.; Nieto-Hidalgo, M.; García-Chamizo, J.M. Interpreting human activity from electrical consumption data using reconfigurable hardware and hidden Markov models. J. Ambient Intell. Hum. Comput. 2017, 8, 469–483. [Google Scholar] [CrossRef]
- Laplante, P.A.; Laplante, N. The Internet of Things in Healthcare: Potential Applications and Challenges. IT Prof. 2016, 18, 2–4. [Google Scholar] [CrossRef]
- Chen, R.C.; Hsieh, C.F.; Chang, W. Using ambient intelligence to extend network lifetime in wireless sensor networks. J. Ambient Intell. Hum. Comput. 2016, 7, 777–788. [Google Scholar] [CrossRef]
- Santos, J.; Rodrigues, J.J.; Silva, B.M.; Casal, J.; Saleem, K.; Denisov, V. An IoT-based mobile gateway for intelligent personal assistants on mobile health environments. J. Netw. Comput. Appl. 2016, 71, 194–204. [Google Scholar] [CrossRef]
- Kalem, G.; Turhan, Ç. Mobile Technology Applications in the Healthcare Industry for Disease Management and Wellness. Procedia Soc. Behav. Sci. 2015, 195, 2014–2018. [Google Scholar] [CrossRef]
- Krishnamoorthy, S. Nanostructured sensors for biomedical applications—A current perspective. Curr. Opin. Biotechnol. 2015, 34, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.Z.-H.; Wong, D.W.-C.; Lam, W.K.; Wan, A.H.-P.; Lee, W.C.-C. Balance Improvement Effects of Biofeedback Systems with State-of-the-Art Wearable Sensors: A Systematic Review. Sensors 2016, 16, 434. [Google Scholar] [CrossRef] [PubMed]
- Mandl, K.D.; Mandel, J.C.; Kohane, I.S. Driving Innovation in Health Systems through an Apps-Based Information Economy. Cell Syst. 2015, 1, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, J.L.; Singh, H.; Sittig, D.F.; Giardina, T.D. Patient portals and health apps: Pitfalls, promises, and what one might learn from the other. Healthcare 2016. [Google Scholar] [CrossRef] [PubMed]
- Fafoutis, X.; Janko, B.; Mellios, E.; Hilton, G.; Sherratt, S.; Piechocki, R.; Craddock, I. SPW-1: A Low-Maintenance Wearable Activity Tracker for Residential Monitoring and Healthcare Applications. In Proceedings of the EAI International Conference on Wearables in Healthcare, Budapest, Hungary, 14–15 June 2016. [Google Scholar]
- Mashal, I.; Alsaryrah, O.; Chung, T.Y. Testing and evaluating recommendation algorithms in internet of things. J. Ambient Intell. Hum. Comput. 2016, 7, 889–900. [Google Scholar] [CrossRef]
- Wu, Q.; Ding, G.; Xu, Y.; Feng, S.; Du, Z.; Wang, J.; Long, K. Cognitive Internet of Things: A New Paradigm Beyond Connection. IEEE Internet Things J. 2014, 1, 129–143. [Google Scholar] [CrossRef]
- Feng, S.; Setoodeh, P.; Haykin, S. Smart Home: Cognitive Interactive People-Centric Internet of Things. Commun. Mag. IEEE 2017, 55, 34–39. [Google Scholar] [CrossRef]
- Finocchiaro, G.; Papadakis, M.; Robertus, J.L.; Dhutia, H.; Steriotis, A.K.; Tome, M.; Sharma, S. Etiology of Sudden Death in Sports: Insights from a United Kingdom Regional Registry. J. Am. Coll. Cardiol. 2016, 67, 18. [Google Scholar] [CrossRef] [PubMed]
- Chatard, J.C.; Mujika, I.; Goiriena, J.J.; Carré, F. Screening young athletes for prevention of sudden cardiac death: Practical recommendations for sports physicians. Scand. J. Med. Sci. Sports 2016, 26, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Mora, H.; Colom, J.F.; Gil, D.; Jimeno-Morenilla, A. Distributed computational model for shared processing on Cyber-Physical System environments. Comput. Commun. 2017, 111, 68–83. [Google Scholar] [CrossRef]
- Teichmann, D.; Kuhn, A.; Leonhardt, S.; Walter, M. The MAIN Shirt: A textile-integrated magnetic induction sensor array. Sensors 2014, 14, 1039–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weyer, S.; Weishaupt, F.; Kleeberg, C.; Leonhardt, S.; Teichmann, D. RheoStim: Development of an Adaptive Multi-Sensor to Prevent Venous Stasis. Sensors 2016, 16, 428. [Google Scholar] [CrossRef] [PubMed]
- Muaremi, A.; Seiter, J.; Tröster, G.; Bexheti, A. Monitor and understand pilgrims: Data collection using smartphones and wearable devices. In Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing, Zurich, Switzerland, 8–12 September 2013; pp. 679–688. [Google Scholar]
- Arsand, E.; Muzny, M.; Bradway, M.; Muzik, J. Performance of the first combined smartwatch and smartphone diabetes diary application study. J. Diabetes 2015, 9, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Terroso, M.; Freitas, R.; Gabriel, J. Active assistance for senior healthcare: A wearable system for fall detection. In Proceedings of the Iberian Conference on Information Systems and Technologies (CISTI), Lisboa, Portugal, 19–22 October 2013. [Google Scholar]
- Yang, Z.; Zhou, Q.; Lei, L.; Zheng, K.; Xiang, W. An IoT-cloud Based Wearable ECG Monitoring System for Smart Healthcare. J. Med. Syst. 2016, 40, 286. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Gupta, S.K.S. Analysis of Smart Mobile Applications for Healthcare under Dynamic Context Changes. IEEE Trans. Mob. Comput. 2015, 14, 904–919. [Google Scholar] [CrossRef]
- Ogunduyile, O.O.; Olugbara, O.O.; Lall, M. Development of Wearable Systems for Ubiquitous Healthcare Service Provisioning. APCBEE Procedia 2013, 7, 163–168. [Google Scholar] [CrossRef]
- Zhang, F.; Cao, J.; Khan, S.U.; Li, K.; Hwang, K. A task-level adaptive MapReduce framework for real-time streaming data in healthcare applications. Future Gener. Comput. Syst. 2015, 43–44, 149–160. [Google Scholar] [CrossRef]
- Varshney, U. Pervasive healthcare and wireless health monitoring. J. Mob. Netw. Appl. 2007, 12, 113–127. [Google Scholar] [CrossRef]
- Dihn, H.T.; Lee, C.; Niyato, D.; Wang, P. A survey of mobile cloud computing: architecture, applications, and approaches. Wirel. Commun. Mob. Comput. 2013, 13. [Google Scholar] [CrossRef]
- Halson, S.L. Monitoring Training Load to Understand Fatigue in Athletes. Sports Med. 2014, 44, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.L.; Chapman, D.W.; Cronin, J.; Gill, N.D. Fatigue Monitoring in High Performance Sport: A Survey of Current Trends. J. Aust. Strength Cond. 2012, 20, 12–23. [Google Scholar]
- Michahelles, F.; Schiele, B. Sensing and monitoring professional skiers. IEEE Pervasive Comput. 2005, 4, 40–45. [Google Scholar] [CrossRef]
- Ghasemzadeh, H.; Loseu, V.; Guenterberg, E.; Jafari, R. Sport training using body sensor networks: A statistical approach to measure wrist rotation for golf swing. In Proceedings of the Fourth International Conference on Body Area Networks, Los Angeles, CA, USA, 1–3 April 2009. [Google Scholar]
- Kellman, M.; Kallus, K.W. The Recovery-Stress Questionnaires: User Manual; Pearson Assessment & Information: Frankfurt, Germany, 2016. [Google Scholar]
- Davis, H.; Orzeck, T.; Keelan, P. Psychometric item evaluations of the Recovery-Stress Questionnaire for athletes. Psychol. Sport Exerc. 2007, 8, 917–938. [Google Scholar] [CrossRef]
- Mcnair, D.; Lorr, M.; Dopplemann, L. Profile of Mood States Manual; Educational and Industrial Testing Service: San Diego, CA, USA, 1992. [Google Scholar]
- Coutts, A.J.; Slattery, K.M.; Wallace, L.K. Practical tests for monitoring performance, fatigue and recovery in triathletes. J. Sci. Med. Sport 2007, 10, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Halson, S.L. Sleep in elite athletes and nutritional interventions to enhance sleep. Sports Med. 2014, 44, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Jobson, S.A.; Passfield, L.; Atkinson, G.; Barton, G.; Scarf, P. The Analysis and Utilization of Cycling Training Data. Sports Med. 2009, 39, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Twist, C.; Highton, J. Monitoring Fatigue and Recovery in Rugby League Players. Int. J. Sports Physiol. Perform. 2013, 8. [Google Scholar] [CrossRef]
- Abdelkrim, N.B.; El Fazaa, S.; El Ati, J. Time–motion analysis and physiological data of elite under-19-year-old basketball players during competition. Br. J. Sports Med. 2007, 41, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, D.B.; Gabbett, T. Global Positioning System Data Analysis: Velocity Ranges and a New Definition of Sprinting for Field Sport Athletes. J. Strength Cond. Res. 2012, 26, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Sivaraks, H.; Ratanamahatana, C.A. Robust and Accurate Anomaly Detection in ECG Artifacts Using Time Series Motif Discovery. Comput. Math. Methods Med. 2015, 453214. [Google Scholar] [CrossRef] [PubMed]
- Senapati, M.K.; Senapati, M.; Maka, S. Cardiac Arrhythmia Classification of ECG Signal Using Morphology and Heart Beat Rate. In Proceedings of the International Conference on Advances in Computing and Communications (ICACC), Cochin, India, 27–29 August 2014. [Google Scholar]
- Pyne, D.B.; Martin, D.T. Fatigue—Insights from individual and team sports. Regul. Fatigue Exerc. 2011, 177–186. [Google Scholar]
- Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Front. Physiol. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Freedson, P.S.; Miller, K. Objective monitoring of physical activity using motion sensors and heart rate. Res. Q. Exerc. Sport 2000, 71, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Daanen, H.A.; Lamberts, R.P.; Kallen, V.L.; Jin, A.; Van Meeteren, N.L. A systematic review on heart-rate recovery to monitor changes in training status in athletes. Int. J. Sports Physiol. Perf. 2012, 7, 251–260. [Google Scholar] [CrossRef]
- Corrado, D.; Pelliccia, A.; Heidbuchel, H.; Sharma, S.; Link, M.; Basso, C.; Anastasakis, A. Recommendations for interpretation of 12-lead electrocardiogram in the athlete. Eur. Heart J. 2010, 31, 243–259. [Google Scholar] [CrossRef] [PubMed]
- McLeod, C.J.; Ackerman, M.J.; Nishimura, R.A.; Tajik, A.J.; Gersh, B.J.; Ommen, S.R. Outcome of Patients With Hypertrophic Cardiomyopathy and a Normal Electrocardiogram. J. Am. Coll. Cardiol. 2009, 54, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Namdar, M.; Steffel, J.; Jetzer, S.; Schmied, C.; Hürlimann, D.; Camici, G.G.; Chierchia, G.B. Value of Electrocardiogram in the Differentiation of Hypertensive Heart Disease, Hypertrophic Cardiomyopathy, Aortic Stenosis, Amyloidosis, and Fabry Disease. Am. J. Cardiol. 2012, 109, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-B.; Lin, C.-C.; Chen, J.-C.; Kuo, C.-W.; Weng, Y.-M. Commotio cordis during prolonged cardiac ventricular repolarization due to exercise-induced hypokalemia: A case report. J. Acute Med. 2016, 6, 19–22. [Google Scholar] [CrossRef]
- Fathala, A.; Hassan, W. Coronary artery anomalies: A diagnostic challenge. J. Saudi Heart Assoc. 2011, 23, 37–39. [Google Scholar] [CrossRef] [PubMed]
- Estes, E.H., Jr.; Jackson, K.P. The electrocardiogram in left ventricular hypertrophy: past and future. J. Electrocardiol. 2009, 42, 589–592. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J.; Shirani, J.; Poliac, L.C.; Mathenge, R. Sudden death in young competitive athletes: Clinical, demographic, and pathological profiles. JAMA 1996, 276, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Arraiz, G.A.; Wigle, D.T.; Mao, Y. Risk assessment of physical activity and physical fitness in the Canada health survey mortality follow-up study. J. Clin. Epidemiol. 1992, 45, 419–428. [Google Scholar] [CrossRef]
- Ferreira, M.; Santos-Silva, P.R.; de Abreu, L.C.; Valenti, V.E.; Crispim, V.; Imaizumi, C.; Filho, C.F.; Murad, N.; Meneghini, A.; Riera, A.R.P.; et al. Sudden cardiac death athletes: a systematic review. Sports Med. Arthrosc. Rehabilita. Ther. Technol. 2010, 2. [Google Scholar] [CrossRef] [PubMed]
- Corrado, D.; Basso, C.; Rizzoli, G.; Schiavon, M.; Thiene, G. Does sports activity enhance the risk of sudden death in adolescents and young adults? J. Am. Coll. Cardiol. 2003, 42, 1959–1963. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J.; Pelliccia, A. The heart of trained athletes cardiac remodeling and the risks of sports, including sudden death. Circulation 2006, 114, 1633–1644. [Google Scholar] [CrossRef] [PubMed]
- Marijon, E.; Tafflet, M.; Celermajer, D.S.; Dumas, F.; Perier, M.C.; Mustafic, H.; Le Heuzey, J.Y. Sports-related sudden death in the general population. Circulation 2011, 124, 672–681. [Google Scholar] [CrossRef] [PubMed]
- Steinvil, A.; Chundadze, T.; Zeltser, D.; Rogowski, O.; Halkin, A.; Galily, Y.; Viskin, S. Mandatory electrocardiographic screening of athletes to reduce their risk for sudden death: proven fact or wishful thinking? J. Am. Coll. Cardiol. 2011, 57, 1291–1296. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J.; Haas, T.S.; Murphy, C.J. Incidence and causes of sudden death in US college athletes. J. Am. Coll. Cardiol. 2014, 63, 1636–1643. [Google Scholar] [CrossRef] [PubMed]
- Solberg, E.E.; Gjertsen, F.; Haugstad, E.; Kolsrud, L. Sudden death in sports among young adults in Norway. Eur. J. Cardiovasc. Prev. Rehabilit. 2010, 17, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzadeh, E.; Pooyan, M.; Bijar, A. A Novel Approach to Predict Sudden Cardiac Death (SCD) Using Nonlinear and Time-Frequency Analyses from HRV Signals. PLoS ONE 2014, 9, e81896. [Google Scholar] [CrossRef] [PubMed]
- Murukesan, L.; Murugappan, M.; Iqbal, M. Sudden cardiac death prediction using ECG signal derivative (Heart Rate Variability): A review. In Proceedings of the IEEE 9th International Colloquium on Signal Processing and its Applications (CSPA), Kuala Lumpur, Malaysia, 8–10 March 2013. [Google Scholar]
- Eranti, A.; Aro, A.L.; Kenttä, T.; Holkeri, A.; Tikkanen, J.T.; Junttila, M.J.; Huikuri, H.V. 12-Lead electrocardiogram as a predictor of sudden cardiac death: from epidemiology to clinical practice. Scand. Cardiovasc. J. 2016, 50. [Google Scholar] [CrossRef] [PubMed]
- Effatparvar, M.; Dehghan, M.; Rahmani, A.M. A comprehensive survey of energy-aware routing protocols in wireless body area sensor networks. J. Med. Syst. 2016, 40, 201. [Google Scholar] [CrossRef] [PubMed]
- Salehi, S.A.; Razzaque, M.A.; Tomeo-Reyes, I.; Hussain, N. IEEE 802.15.6 standard in wireless body area networks from a healthcare point of view. In Proceedings of the Asia-Pacific Conference on Communications (APCC), Yogyakarta, Indonesia, 25–27 August 2016. [Google Scholar]
- Ghamari, M.; Janko, B.; Sherratt, R.S.; Harwin, W.; Piechockic, R.; Soltanpur, C. A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments. Sensors 2016, 16, 831. [Google Scholar] [CrossRef] [PubMed]
- Kwak, K.S.; Ullah, S.; Ullah, N. An overview of IEEE 802.15.6 standard. In Proceedings of the International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), Roma, Italy, 7–10 November 2010. [Google Scholar]
- Sadra, S.; Abolhasan, M. On improving the saturation performance of IEEE802.15.6-based MAC protocols in Wireless Body Area Networks. In Proceedings of the International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp. 1233–1238. [Google Scholar]
- Ermes, M.; Pärkkä, J.; Mäntyjärvi, J.; Korhonen, I. Detection of Daily Activities and Sports with Wearable Sensors in Controlled and Uncontrolled Conditions’. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.-J.; Kim, I.-J.; Chul Ahn, S.; Kim, H.-G. Mobile health monitoring system based on activity recognition using accelerometer. Simul. Model. Pract. Theor. 2010, 18, 446–455. [Google Scholar] [CrossRef]
- Khorov, E.; Lyakhov, A.; Krotov, A.; Guschin, A. A survey on IEEE 802.11ah: An enabling networking technology for smart cities. Comput. Commun. 2015, 58, 53–69. [Google Scholar] [CrossRef]
- Baños-Gonzalez, V.; Afaqui, M.S.; Lopez-Aguilera, E.; Garcia-Villegas, E. IEEE 802.11ah: A Technology to Face the IoT Challenge. Sensors 2016, 16, 1960. [Google Scholar] [CrossRef]
- Yoo, J.; Yoo, H.-J. Emerging low energy Wearable Body Sensor Networks using patch sensors for continuous healthcare applications. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2010. [Google Scholar] [CrossRef]
- Altaf, M.A.B.; Zhang, C.; Radakovic, L.; Yoo, J. Design of energy-efficient on-chip EEG classification and recording processors for wearable environments. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016. [Google Scholar]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Kornreich, F.; Rautaharju, P.M.; Warren, J.; Montague, T.J.; Horacek, B.M. Identification of best electrocardiographic leads for diagnosing myocardial infarction by statistical analysis of body surface potential maps. Am. J. Cardiol. 1985, 56, 852. [Google Scholar] [CrossRef]
- Green, M.; Ohlsson, M.; Forberg, J.L.; Björk, J.; Edenbrandt, L.; Ekelund, U. Best leads in the standard electrocardiogram for the emergency detection of acute coronary syndrome. J. Electrocardiol. 2007, 40, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Cuomo, S.; De Pietro, G.; Farina, R.; Galletti, A.; Sannino, G. A Novel O(n) Numerical Scheme for ECG Signal Denoising, Procedia Computer Science. Procedia Comput. Sci. 2015, 51, 775–784. [Google Scholar] [CrossRef]
- Luo, S.; Johnston, P. A review of electrocardiogram filtering. J. Electrocardiol. 2010, 43, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Castells-Rufas, D.; Carrabina, J. Simple real-time QRS detector with the MaMeMi filter. Biomed. Signal Process. Control 2015, 21, 137–145. [Google Scholar] [CrossRef]
- Xia, Y.; Han, J.; Wang, K. Quick detection of QRS complexes and R-waves using a wavelet transform and K-means clustering. Biomed. Mater. Eng. 2015, 26. [Google Scholar] [CrossRef]
- Hamdi, S.; Abdallah, A.B.; Bedoui, M.H. Real time QRS complex detection using DFA and regular grammar. Biomed. Eng. Online 2017, 16, 31. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Shin, H. Simple and Robust Realtime QRS Detection Algorithm Based on Spatiotemporal Characteristic of the QRS Complex. PLoS ONE 2016, 11, e0150144. [Google Scholar] [CrossRef] [PubMed]
- Masud, M.M.; Serhani, M.A.; Navaz, A.N. Resource-Aware Mobile-Based Health Monitoring. IEEE J. Biomed. Health Inform. 2017, 21, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Biswal, P.; Das, T.; Sabut, S. De-noising of ECG Signal and QRS Detection Using Hilbert Transform and Adaptive Thresholding. Procedia Technol. 2016, 25, 68–75. [Google Scholar] [CrossRef]
- Luz, E.J.; Schwartz, W.R.; Cámara-Chávez, G.; Menotti, D. ECG-based heartbeat classification for arrhythmia detection: A survey. Comput. Methods Prog. Biomed. 2016, 127, 144–164. [Google Scholar] [CrossRef] [PubMed]
- Daamouche, A.; Hamami, L.; Alajlan, N.; Melgani, F. A wavelet optimization approach for ECG signal classification, Biomed. Signal Process. Control 2012, 7, 342–349. [Google Scholar] [CrossRef]
- Kutlu, Y.; Kuntalp, D. Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients. Comput. Method Prog. Biomed. 2012, 105, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Mitra, M.; Samanta, R.K. Classification of ECG arrythmia beats with artificial neural networks. Procedia Technol. 2013, 10, 76–84. [Google Scholar] [CrossRef]
- Dursch, A.; Yen, D.C.; Shih, D.H. Bluetooth technology: An exploratory study of the analysis and implementation frameworks. Comput. Stand. Interface 2004, 26, 263–277. [Google Scholar] [CrossRef]
- Khoso, M.; Khan, K. Smartphones: A Supercomputer in Your Pocket, Analytics Trends. Northeastern University, 2016. Available online: http://www.northeastern.edu/levelblog/2016/04/21/smartphones-supercomputer-in-your-pocket/ (accessed on 13 September 2017).
- Miao, F.; Cheng, Y.; He, Y.; He, Q.; Li, Y. A Wearable Context-Aware ECG Monitoring System Integrated with Built-in Kinematic Sensors of the Smartphone. Sensors 2015, 15, 11465–11484. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Duan, X.; Guo, X.; Huang, A.; Jiao, B. Design and tests of a smartphones-based multi-lead ECG monitoring system. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013. [Google Scholar]
- Gradl, S.; Kugler, P.; Lohmuller, C.; Eskofier, B. Real-time ECG monitoring and arrhythmia detection using Android-based mobile devices. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012. [Google Scholar]
- Elgendi, M.; Eskofier, B.; Dokos, S.; Abbott, D. Revisiting QRS Detection Methodologies for Portable, Wearable, Battery-Operated, and Wireless ECG Systems. PLoS ONE 2014, 9, e84018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y.F.; Ling, W.K.; Liu, Q.; Wang, M.; Cao, J. QRS complex detection based wearable electrocardiogram acquistion system via computing regularity without evaluating the modulus maxima. In Proceedings of the IEEE International Conference on Industrial Informatics (INDIN), Poitiers, France, 19–21 July 2016. [Google Scholar]
Research | Biomedical Signals | Devices |
---|---|---|
Real-time streaming data in healthcare applications [34] | Generic Biomedical signals | Generic Biomedical sensors |
Recognition of activities and health monitoring [28] | Heart biomedical signals | Smartphones & wearable devices |
Long-term monitoring of respiration and pulse [26] | Respiration and pulse | Non-contact sensors textile-integrated |
Diabetes monitoring [29] | Daily activity data | Smartphone & smartwatch |
Active assistance [30] | Activity and environment data | Wearable sensors and smartphone |
Detect and prevent venous stasis [27] | Pulse and blood flow data | Multi-sensor plethysmography device |
Physiological data of elderly patients [33] | Oxygen saturation level, Heart Rate | Biomedical sensors & smartphone |
ECG Smart Healthcare monitoring [31] | ECG signals | Wearable ECG sensors and Cloud for processing |
Mobile medical computing systems [32] | Medical signal and context information | Different sensors and actuators |
Applications in the pervasive environment [35] | Pulse rate, blood pressure, level of alcohol, etc. | Mobile healthcare |
Technology (Release Date) | Frequency Band | Data Rate * | Range * | Target Applications |
---|---|---|---|---|
802.11n (2009) | 2.4; 5.4 GHz | 600 Kbps | 30 m | Standard scenarios. |
802.11ac (2014) | 5.4 GHz | 1.3 Mbps | 30 m | High speed scenarios (i.e., home, hotels, airports, etc.) |
801.11ad (2012) | 60 GHz | 7 Gbps | 10 m | High density and/or extra-high speed indoor scenarios (i.e., conference room, department). |
802.11ah (2016) | 0.9 GHz | 100 Kbps | 1000 m | Indoor/outdoor IoT scenarios. |
Design Stages | Inputs | Outputs |
---|---|---|
(i) Application analysis for tasks and dataflows break down |
|
|
(ii) Resource planning |
|
|
(iii) Deployment and calibration of the system |
|
|
Task | Smartwatch (b2) | Tablet (m1) | Portable Computer (m2) |
---|---|---|---|
t2 | 0.0000228 | 0.0000058 | 0.0000050 |
t3 | 0.0001824 | 0.0000464 | 0.0000400 |
t4 | 0.0200000 | 0.0050891 | 0.0043860 |
t5 | 0.1800000 | 0.0458015 | 0.0026316 |
t6 | 0,0223440 | 0.0056855 | 0.0049000 |
Total | 0.2225492 | 0.0566283 | 0.0119625 |
Application Context (B) − 11 Players | Application Context (C) − 22 Players + 4 Referees | |||||
---|---|---|---|---|---|---|
Task | Figure 3b | Figure 3c | Figure 3d | Figure 3b * | Figure 3c * | Figure 3d |
t2 | 0.0000228 | 0.0000228 | 0.0000228 | 0.0000228 | 0.0000228 | 0.0000228 |
t3 | 0.0001824 | 0.0001824 | 0.0001824 | 0.0001824 | 0.0001824 | 0.0001824 |
t4 | 0.0559796 | 0.0200000 | 0.0559796 | 0.1140351 | 0.0200000 | 0.0735235 |
t5 | 0.5038168 | 0.1800000 | 0.0289474 | 0.0684211 | 0.1800000 | 0.0684211 |
t6 | 0.0625405 | 0.0625405 | 0.0539000 | 0.1274000 | 0.1274000 | 0.1274000 |
Total | 0.6225421 | 0.2627457 | 0.1390322 | 0.3100613 | 0.3276052 | 0.2695498 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora, H.; Gil, D.; Terol, R.M.; Azorín, J.; Szymanski, J. An IoT-Based Computational Framework for Healthcare Monitoring in Mobile Environments. Sensors 2017, 17, 2302. https://doi.org/10.3390/s17102302
Mora H, Gil D, Terol RM, Azorín J, Szymanski J. An IoT-Based Computational Framework for Healthcare Monitoring in Mobile Environments. Sensors. 2017; 17(10):2302. https://doi.org/10.3390/s17102302
Chicago/Turabian StyleMora, Higinio, David Gil, Rafael Muñoz Terol, Jorge Azorín, and Julian Szymanski. 2017. "An IoT-Based Computational Framework for Healthcare Monitoring in Mobile Environments" Sensors 17, no. 10: 2302. https://doi.org/10.3390/s17102302
APA StyleMora, H., Gil, D., Terol, R. M., Azorín, J., & Szymanski, J. (2017). An IoT-Based Computational Framework for Healthcare Monitoring in Mobile Environments. Sensors, 17(10), 2302. https://doi.org/10.3390/s17102302