Spatiotemporal Pixelization to Increase the Recognition Score of Characters for Retinal Prostheses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image-Processing Methods for Character Pixelization
- Static pixelization: The original character image was sampled with the same resolution as that of the stimulating array using the block-averaging algorithm, which reduced the resolution of the original image by dividing it into n × n blocks and replacing the pixel values of each block with the mean gray-scale levels of the corresponding block. The phosphene image was generated by convolving the two-dimensional Gaussian function with the block-averaged image; see Figure 1a.
- Spatiotemporal pixelization: By using the block-averaging algorithm described above, the original image was sampled at a spatial resolution that was four times higher than that of the static pixelization. This block-averaged image was subsampled into four different lower resolution images using the following relationship:
2.2. Experimental Designs
3. Results
3.1. Experiment I: Recognition of Pixelized English Letters
3.2. Experiment II: Recognition of Pixelized Korean Characters
4. Discussion
4.1. Stimulus Frame Rates of the Spatiotemporal Pixelization Method
4.2. The Limitations of the Proposed Method
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Luo, Y.H.-L.; da Cruz, L. The Argus® II Retinal Prosthesis System. Prog. Retin. Eye Res. 2016, 50, 89–107. [Google Scholar] [CrossRef] [PubMed]
- Stingl, K.; Bartz-Schmidt, K.U.; Besch, D.; Chee, C.K.; Cottriall, C.L.; Gekeler, F.; Groppe, M.; Jackson, T.L.; MacLaren, R.E.; Koitschev, A.; et al. Subretinal Visual Implant Alpha IMS--Clinical trial interim report. Vision Res. 2015, 111, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Menzel-Severing, J.; Laube, T.; Brockmann, C.; Bornfeld, N.; Mokwa, W.; Mazinani, B.; Walter, P.; Roessler, G. Implantation and explantation of an active epiretinal visual prosthesis: 2-year follow-up data from the EPIRET3 prospective clinical trial. Eye Lond. Engl. 2012, 26, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, J.F. Update on retinal prosthetic research: The Boston Retinal Implant Project. J. Neuro-Ophthalmol. Off. J. N. Am. Neuro-Ophthalmol. Soc. 2011, 31, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Ayton, L.N.; Blamey, P.J.; Guymer, R.H.; Luu, C.D.; Nayagam, D.A.X.; Sinclair, N.C.; Shivdasani, M.N.; Yeoh, J.; McCombe, M.F.; Briggs, R.J.; et al. Bionic Vision Australia Research Consortium First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS ONE 2014, 9, e115239. [Google Scholar] [CrossRef] [PubMed]
- Zrenner, E. Will retinal implants restore vision? Science 2002, 295, 1022–1025. [Google Scholar] [CrossRef] [PubMed]
- Fine, I.; Boynton, G.M. Pulse trains to percepts: The challenge of creating a perceptually intelligible world with sight recovery technologies. Philos. Trans. R. Soc. B 2015, 370, 20140208. [Google Scholar] [CrossRef] [PubMed]
- Beyeler, M.; Rokem, A.; Boynton, G.M.; Fine, I. Learning to see again: Biological constraints on cortical plasticity and the implications for sight restoration technologies. J. Neural Eng. 2017, 14, 051003. [Google Scholar] [CrossRef] [PubMed]
- Cha, K.; Horch, K.W.; Normann, R.A.; Boman, D.K. Reading speed with a pixelized vision system. J. Opt. Soc. Am. A 1992, 9, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Dagnelie, G.; Barnett, D.; Humayun, M.S.; Thompson, R.W. Paragraph text reading using a pixelized prosthetic vision simulator: Parameter dependence and task learning in free-viewing conditions. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Legge, G.E.; Pelli, D.G.; Rubin, G.S.; Schleske, M.M. Psychophysics of reading--I. Normal vision. Vision Res. 1985, 25, 239–252. [Google Scholar] [CrossRef]
- Sommerhalder, J.; Oueghlani, E.; Bagnoud, M.; Leonards, U.; Safran, A.B.; Pelizzone, M. Simulation of artificial vision: I. Eccentric reading of isolated words, and perceptual learning. Vision Res. 2003, 43, 269–283. [Google Scholar] [CrossRef]
- Sommerhalder, J.; Rappaz, B.; de Haller, R.; Fornos, A.P.; Safran, A.B.; Pelizzone, M. Simulation of artificial vision: II. Eccentric reading of full-page text and the learning of this task. Vision Res. 2004, 44, 1693–1706. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Cai, S.; Zhang, H.; Hu, G.; Zhang, X. Psychophysics of reading with a limited number of pixels: Towards the rehabilitation of reading ability with visual prosthesis. Vision Res. 2006, 46, 1292–1301. [Google Scholar] [CrossRef] [PubMed]
- Chai, X.; Yu, W.; Wang, J.; Zhao, Y.; Cai, C.; Ren, Q. Recognition of pixelized Chinese characters using simulated prosthetic vision. Artif. Organs 2007, 31, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lu, Y.; Zhao, J.; Wang, K.; Ren, Q.; Wu, K.; Chai, X. Reading pixelized paragraphs of Chinese characters using simulated prosthetic vision. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5987–5994. [Google Scholar] [CrossRef] [PubMed]
- Hafed, Z.M.; Stingl, K.; Bartz-Schmidt, K.-U.; Gekeler, F.; Zrenner, E. Oculomotor behavior of blind patients seeing with a subretinal visual implant. Vision Res. 2016, 118, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Conde, S.; Macknik, S.L.; Hubel, D.H. The role of fixational eye movements in visual perception. Nat. Rev. Neurosci. 2004, 5, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Fornos, A.P.; Sommerhalder, J.; Rappaz, B.; Safran, A.B.; Pelizzone, M. Simulation of artificial vision, III: Do the spatial or temporal characteristics of stimulus pixelization really matter? Investig. Ophthalmol. Vis. Sci. 2005, 46, 3906–3912. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Han, T.; Wang, J.; Lu, Z.; Cao, X.; Chen, Y.; Li, L.; Zhou, C.; Chai, X. A real-time image optimization strategy based on global saliency detection for artificial retinal prostheses. Inf. Sci. 2017, 415, 1–18. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.S.; Park, K.S. Spatiotemporal Pixelization to Increase the Recognition Score of Characters for Retinal Prostheses. Sensors 2017, 17, 2439. https://doi.org/10.3390/s17102439
Kim HS, Park KS. Spatiotemporal Pixelization to Increase the Recognition Score of Characters for Retinal Prostheses. Sensors. 2017; 17(10):2439. https://doi.org/10.3390/s17102439
Chicago/Turabian StyleKim, Hyun Seok, and Kwang Suk Park. 2017. "Spatiotemporal Pixelization to Increase the Recognition Score of Characters for Retinal Prostheses" Sensors 17, no. 10: 2439. https://doi.org/10.3390/s17102439
APA StyleKim, H. S., & Park, K. S. (2017). Spatiotemporal Pixelization to Increase the Recognition Score of Characters for Retinal Prostheses. Sensors, 17(10), 2439. https://doi.org/10.3390/s17102439