Recent Progress in Optical Biosensors Based on Smartphone Platforms
Abstract
:1. Introduction
2. Biosensor Based on Imaging
2.1. Microscopes
2.2. Lens-Free Microscope
2.3. Summary
3. Biosensor Based on Spectrometry
3.1. Colorimetric
3.2. Spectrum
3.3. Summary
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Meng, X.; Huang, H.; Yan, K.; Tian, X.; Yu, W.; Cui, H.; Kong, Y.; Xue, L.; Liu, C.; Wang, S. Smartphone based hand-held quantitative phase microscope using the transport of intensity equation method. Lab Chip 2017, 17, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Zhang, Q.; Lu, Y.; Liu, L.; Ji, D.; Li, S.; Liu, Q. Passive and wireless near field communication tag sensors for biochemical sensing with smartphone. Sens. Actuators B Chem. 2017, 246, 748–755. [Google Scholar] [CrossRef]
- Calabria, D.; Caliceti, C.; Zangheri, M.; Mirasoli, M.; Simoni, P.; Roda, A. Smartphone–based enzymatic biosensor for oral fluid L-lactate detection in one minute using confined multilayer paper reflectometry. Biosens. Bioelectron. 2017, 94, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-S.; Shin, J.; Choi, S.; Jung, H.-I. Smartphone Diagnostics Unit (SDU) for the assessment of human stress and inflammation level assisted by biomarker ink, fountain pen, and origami holder for strip biosensor. Sens. Actuators B Chem. 2017, 241, 80–84. [Google Scholar] [CrossRef]
- Wang, L.-J.; Chang, Y.-C.; Sun, R.; Li, L. A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics. Biosens. Bioelectron. 2017, 87, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Ahamad, K.; Nath, P. Water turbidity sensing using a smartphone. RSC Adv. 2016, 6, 22374–22382. [Google Scholar] [CrossRef]
- Jung, Y.; Kim, J.; Awofeso, O.; Kim, H.; Regnier, F.; Bae, E. Smartphone-based colorimetric analysis for detection of saliva alcohol concentration. Appl. Opt. 2015, 54, 9183. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Saikia, K.; Nath, P. Smartphone based LSPR sensing platform for bio-conjugation detection and quantification. RSC Adv. 2016, 6, 21871–21880. [Google Scholar] [CrossRef]
- Romeo, A.; Leung, T.S.; Sánchez, S. Smart biosensors for multiplexed and fully integrated point-of-care diagnostics. Lab Chip 2016, 16, 1957–1961. [Google Scholar] [CrossRef] [PubMed]
- Ghatpande, N.S.; Apte, P.P.; Joshi, B.N.; Naik, S.S.; Bodas, D.; Sande, V.; Uttarwar, P.; Kulkarni, P.P. Development of a novel smartphone-based application for accurate and sensitive on-field hemoglobin measurement. RSC Adv. 2016, 6, 104067–104072. [Google Scholar] [CrossRef]
- Yu, L.; Shi, Z.; Fang, C.; Zhang, Y.; Liu, Y.; Li, C. Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk. Biosens. Bioelectron. 2015, 69, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Z.; Zhao, D.; Wen, F.; Jiang, J.; Xu, D. Smartphone-based visualized microarray detection for multiplexed harmful substances in milk. Biosens. Bioelectron. 2017, 87, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-H.; Chen, W.-Y.; Yen, Y.-C.; Wang, C.-W.; Chang, H.-T.; Chen, C.-F. Detection of Mercury(II) Ions Using Colorimetric Gold Nanoparticles on Paper-Based Analytical Devices. Anal. Chem. 2014, 86, 6843–6849. [Google Scholar] [CrossRef] [PubMed]
- Paterson, A.S.; Raja, B.; Mandadi, V.; Townsend, B.; Lee, M.; Buell, A.; Vu, B.; Brgoch, J.; Willson, R.C. A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors. Lab Chip 2017, 17, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, A. Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip 2014, 14, 3187–3194. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Isikman, S.O.; Mudanyali, O.; Greenbaum, A.; Ozcan, A. Optical imaging techniques for point-of-care diagnostics. Lab Chip 2013, 13, 51–67. [Google Scholar] [CrossRef] [PubMed]
- McCracken, K.E.; Yoon, J.-Y. Recent approaches for optical smartphone sensing in resource-limited settings: A brief review. Anal. Methods 2016, 8, 6591–6601. [Google Scholar] [CrossRef]
- Roda, A.; Michelini, E.; Zangheri, M.; Di Fusco, M.; Calabria, D.; Simoni, P. Smartphone-based biosensors: A critical review and perspectives. TrAC Trends Anal. Chem. 2016, 79, 317–325. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Q. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron. 2016, 75, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Breslauer, D.N.; Maamari, R.N.; Switz, N.A.; Lam, W.A.; Fletcher, D.A. Mobile Phone Based Clinical Microscopy for Global Health Applications. PLoS ONE 2009, 4, e6320. [Google Scholar] [CrossRef] [PubMed]
- Navruz, I.; Coskun, A.F.; Wong, J.; Mohammad, S.; Tseng, D.; Nagi, R.; Phillips, S.; Ozcan, A. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array. Lab Chip 2013, 13, 4015. [Google Scholar] [CrossRef] [PubMed]
- Kanakasabapathy, M.K.; Pandya, H.J.; Draz, M.S.; Chug, M.K.; Sadasivam, M.; Kumar, S.; Etemad, B.; Yogesh, V.; Safavieh, M.; Asghar, W.; et al. Rapid, label-free CD4 testing using a smartphone compatible device. Lab Chip 2017. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Mavandadi, S.; Coskun, A.F.; Yaglidere, O.; Ozcan, A. Optofluidic Fluorescent Imaging Cytometry on a Cell Phone. Anal. Chem. 2011, 83, 6641–6647. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Yaglidere, O.; Su, T.-W.; Tseng, D.; Ozcan, A. Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip 2011, 11, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Bishara, W.; Su, T.-W.; Coskun, A.F.; Ozcan, A. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Opt. Express 2010, 18, 11181. [Google Scholar] [CrossRef] [PubMed]
- Mudanyali, O.; Tseng, D.; Oh, C.; Isikman, S.O.; Sencan, I.; Bishara, W.; Oztoprak, C.; Seo, S.; Khademhosseini, B.; Ozcan, A. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 2010, 10, 1417. [Google Scholar] [CrossRef] [PubMed]
- Tseng, D.; Mudanyali, O.; Oztoprak, C.; Isikman, S.O.; Sencan, I.; Yaglidere, O.; Ozcan, A. Lensfree microscopy on a cellphone. Lab Chip 2010, 10, 1787. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Yang, C. A smartphone-based chip-scale microscope using ambient illumination. Lab Chip 2014, 14, 3056–3063. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Tian, J.; Cao, R.; Li, M.; Cai, Z.; Shen, W. Barcode-Like Paper Sensor for Smartphone Diagnostics: An Application of Blood Typing. Anal. Chem. 2014, 86, 11362–11367. [Google Scholar] [CrossRef] [PubMed]
- Oncescu, V.; O’Dell, D.; Erickson, D. Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva. Lab Chip 2013, 13, 3232. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Hagen, J.A.; Papautsky, I. Point-of-care colorimetric detection with a smartphone. Lab Chip 2012, 12, 4240. [Google Scholar] [CrossRef] [PubMed]
- Yetisen, A.K.; Jiang, N.; Tamayol, A.; Ruiz-Esparza, G.U.; Zhang, Y.S.; Medina-Pando, S.; Gupta, A.; Wolffsohn, J.S.; Butt, H.; Khademhosseini, A.; et al. Paper-based microfluidic system for tear electrolyte analysis. Lab Chip 2017, 17, 1137–1148. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.C.; Jalal, U.M.; Im, S.B.; Ko, S.; Shim, J.S. A smartphone-based optical platform for colorimetric analysis of microfluidic device. Sens. Actuators B Chem. 2017, 239, 52–59. [Google Scholar] [CrossRef]
- Cho, S.; Islas-Robles, A.; Nicolini, A.M.; Monks, T.J.; Yoon, J.-Y. In situ, dual-mode monitoring of organ-on-a-chip with smartphone-based fluorescence microscope. Biosens. Bioelectron. 2016, 86, 697–705. [Google Scholar] [CrossRef] [PubMed]
- McCracken, K.E.; Tat, T.; Paz, V.; Yoon, J.-Y. Smartphone-based fluorescence detection of bisphenol A from water samples. RSC Adv. 2017, 7, 9237–9243. [Google Scholar] [CrossRef]
- Roda, A.; Guardigli, M.; Calabria, D.; Calabretta, M.M.; Cevenini, L.; Michelini, E. A 3D-printed device for a smartphone-based chemiluminescence biosensor for lactate in oral fluid and sweat. Analyst 2014, 139, 6494–6501. [Google Scholar] [CrossRef] [PubMed]
- Lebiga, E.; Edwin Fernandez, R.; Beskok, A. Confined chemiluminescence detection of nanomolar levels of H2O2 in a paper–plastic disposable microfluidic device using a smartphone. Analyst 2015, 140, 5006–5011. [Google Scholar] [CrossRef] [PubMed]
- Giavazzi, F.; Salina, M.; Ceccarello, E.; Ilacqua, A.; Damin, F.; Sola, L.; Chiari, M.; Chini, B.; Cerbino, R.; Bellini, T.; et al. A fast and simple label-free immunoassay based on a smartphone. Biosens. Bioelectron. 2014, 58, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.I.; Chang, B.-Y. Development of the smartphone-based colorimetry for multi-analyte sensing arrays. Lab Chip 2014, 14, 1725–1732. [Google Scholar] [CrossRef] [PubMed]
- Bulgac, A.; Luo, Y.-L.; Magierski, P.; Roche, K.J.; Yu, Y. Real-Time Dynamics of Quantized Vortices in a Unitary Fermi Superfluid. Science 2011, 332, 1288–1291. [Google Scholar] [CrossRef] [PubMed]
- Then, W.L.; Aguilar, M.-I.; Garnier, G. Quantitative Detection of Weak D Antigen Variants in Blood Typing using SPR. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhao, X.; Fei, Y.; Yu, D.; Qian, J.; Tong, J.; Chen, G.; He, S. The effects of magnetic fields exposure on relative permittivity of saline solutions measured by a high resolution SPR system. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Q.; Chen, S.; Cheng, F.; Wang, H.; Peng, W. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, X.; Wang, J.; Fu, W.; Yao, C. A SPR biosensor based on signal amplification using antibody-QD conjugates for quantitative determination of multiple tumor markers. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Guner, H.; Ozgur, E.; Kokturk, G.; Celik, M.; Esen, E.; Topal, A.E.; Ayas, S.; Uludag, Y.; Elbuken, C.; Dana, A. A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection. Sens. Actuators B Chem. 2017, 239, 571–577. [Google Scholar] [CrossRef]
- Wang, X.; Chang, T.-W.; Lin, G.; Gartia, M.R.; Liu, G.L. Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing. Anal. Chem. 2017, 89, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, X.; Chen, P.; Tran, N.T.; Zhang, J.; Chia, W.S.; Boujday, S.; Liedberg, B. Smartphone spectrometer for colorimetric biosensing. Analyst 2016, 141, 3233–3238. [Google Scholar] [CrossRef] [PubMed]
- Gallegos, D.; Long, K.D.; Yu, H.; Clark, P.P.; Lin, Y.; George, S.; Nath, P.; Cunningham, B.T. Label-free biodetection using a smartphone. Lab Chip 2013, 13, 2124. [Google Scholar] [CrossRef] [PubMed]
Sensing Mechanism | Detect Target | Limit of Detection | Smartphone Model | Accessory | Reference |
---|---|---|---|---|---|
Brightfield and fluorescence | Red blood cells (brighfield) sputum (fluorescence) | ≥1.2 μm | Nokia N73 3.2 megapixel | LED, filter(for flourescence), lenses, eyepiece, objective | [20] |
Contact microscope | White blood cells | ≥1.6 μm (Samsung) ≥1.5 μm (Sony-Ericsson) | Samsung Galaxy S2, 8 megapixel; Sony-Ericsson Aino, 8 megapixel | LED, lenses, rotater, fiber-optic taper | [21] |
Brightfield | CD4+ T-cells | ≥60 cells per μL | MotoX-XT1575, Motorola | Functionalized microfluidic chip, light source, lenses | [22] |
Fluorescent | White blood cells | ~2 μm | Sony-Erickson U10i Aino, 8 megapixel | Microfluidic chip, LED, plastic color filter, batteries, lens | [24] |
Quantitative phase microscope | Red blood cells, pap smear, monocot root, broad bean epidermis | - | Nubia Z9 mini | 3D printed shell, eyepiece, micro-objective, LED, precision translation stage | [1] |
Lensfree microscopy | Red blood cells, white blood cells, platelets, Giardia lamblia cysts | ≥2.2 μm | Moto Zine ZN5, 5 megapixel | LED, plastic components, battery | [27] |
Lensfree Shadow imaging | Blood cells, microorganisms | ≥500 nm | Samsung galaxy S4, 13megapixels | - | [28] |
Lensfree Image recognition | Paper-based blood typing device | - | Google Nexus 5 | - | [29] |
Sensing Mechanism | Detect Target | Limit of Detection | Smartphone | Accessory | Reference |
---|---|---|---|---|---|
Colorimetric | Sweat pH | - | iPhone 4 and 4S | 3D printed shells, flash diffuser, test strip | [30] |
Colorimetric | pH | ~0.5 unit (pH) | HTC and BlackBerry | Test strip, reference strip | [31] |
Colorimetric | Electrolytes in tear | 1.0 mmol/L (Na+); 1.3 mmol/L (K+); 0.02 mmol/L (Ca2+); 0.13 unit (pH) | iPhone 6S | Paper-based microfluidic | [32] |
Colorimetric | Blood (concentration of hematocrit) | 0.1% | Galaxy S II | PDMS light diffuser, microfluidic device, PMMA box | [33] |
Fluorescence | proteins | 10 pg/mL | iPhone 5S | LED, 3D printed attachment, organ-on-a-chip | [34] |
Chemiluminescence | Lactate levels in oral fluid and sweat | 0.5 mmol/L (oral fluid); 0.1 mmol/L (sweat) | Samsung Galaxy SII Plus | 3D printed analytical device | [36] |
Chemiluminescence | H2O2 | 250 nmol/L | iPhone | Disposable paper-plastic microfluidic device | [37] |
Reflective Phantom Interface | Hepatitis B and HIV | 10 ng/mL | HTC DesireHD | Plastic cradle | [38] |
Sensing Mechanism | Detect Target | Limit of Detection | Smartphone | Accessory | Reference |
---|---|---|---|---|---|
SPR imaging | Mouse IgG | A few nmol | SamsungI8552 Galaxy Win | Disposable fluidic chip, Bimetallic BD chip, Optical attachment | [45] |
SPR and LSPR | BSA | 0.01 mg/mL | iPhone 6 | Adjustable platform, LED, nano Lycurgus cup array chip | [46] |
LSPR | BSA | 19.2 μg/mL | iPhone 4 | Lenses, broad band source, grating | [46] |
LSPR | Cardiac troponin I (cTnI) | 50 ng/mL | HTC sensation XE iPhone 5s, Nokia Lumia 920 | CD grating, peptide-functionalized AuNPs, shells | [47] |
Photonic crystal | IgG | 4.25 nmol/L | iPhone 4 | optical components, broadband source, photonic crystal, grating, pinhole | [48] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, Z.; Zhang, X.; Fan, Z.; Lv, X.; Su, Y.; Chen, H. Recent Progress in Optical Biosensors Based on Smartphone Platforms. Sensors 2017, 17, 2449. https://doi.org/10.3390/s17112449
Geng Z, Zhang X, Fan Z, Lv X, Su Y, Chen H. Recent Progress in Optical Biosensors Based on Smartphone Platforms. Sensors. 2017; 17(11):2449. https://doi.org/10.3390/s17112449
Chicago/Turabian StyleGeng, Zhaoxin, Xiong Zhang, Zhiyuan Fan, Xiaoqing Lv, Yue Su, and Hongda Chen. 2017. "Recent Progress in Optical Biosensors Based on Smartphone Platforms" Sensors 17, no. 11: 2449. https://doi.org/10.3390/s17112449
APA StyleGeng, Z., Zhang, X., Fan, Z., Lv, X., Su, Y., & Chen, H. (2017). Recent Progress in Optical Biosensors Based on Smartphone Platforms. Sensors, 17(11), 2449. https://doi.org/10.3390/s17112449