Surface-Enhanced Resonance Raman Scattering of Rhodamine 6G in Dispersions and on Films of Confeito-Like Au Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of AuNPs
2.3. Instruments
2.4. Measurement of SERS in Dispersions and on Films of AuNPs
3. Results and Discussion
3.1. Characterization of AuNPs
3.2. SERS of Rhodamine 6G in Dispersions of AuNPs
3.3. SERS of Rhodamine 6G on Films of AuNPs
3.4. Enhancement Factors of SERS in Dispersions and on Films
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Maier, S.A.; Atwater, H.A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 2005, 98, 011101. [Google Scholar] [CrossRef]
- Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248. [Google Scholar] [CrossRef] [PubMed]
- Murray, W.A.; Barnes, W.L. Plasmonic materials. Adv. Mater. 2007, 19, 3771–3782. [Google Scholar] [CrossRef]
- Ho, F.H.; Wu, Y.-H.; Ujihara, M.; Imae, T. A solution-based nano-plasmonic sensing technique by using gold nanorods. Analyst 2012, 137, 2545–2548. [Google Scholar] [CrossRef] [PubMed]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Eustis, S.; El-Sayed, M.A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2006, 35, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Metiu, H. Surface enhanced spectroscopy. Prog. Surf. Sci. 1984, 17, 153–320. [Google Scholar] [CrossRef]
- Tian, Z.Q.; Ren, B.; Wu, D.Y. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 2002, 106, 9463–9483. [Google Scholar] [CrossRef]
- Zhang, Z.; Imae, T.; Sato, H.; Watanabe, A.; Ozaki, Y. Surface-enhanced Raman scattering and surface-enhanced infrared absorption spectroscopic studies of a metalloporphyrin monolayer film formed on pyridine self-assembled monolayer-modified gold. Langmuir 2001, 17, 4564–4568. [Google Scholar] [CrossRef]
- Imae, T.; Zhang, X. Effect of Au nanorod assemblies on surface-enhanced Raman spectroscopy. J. Taiwan Inst. Chem. Eng. 2014, 45, 3081–3084. [Google Scholar] [CrossRef]
- Ataka, K.; Hara, Y.; Osawa, M. A new approach to electrode kinetics and dynamics by potential modulated Fourier transform infrared spectroscopy. J. Electroanal. Chem. 1999, 473, 34–42. [Google Scholar] [CrossRef]
- Imae, T.; Torii, H. In Situ investigation of molecular adsorption on Au surface by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. B 2000, 104, 9218–9224. [Google Scholar] [CrossRef]
- Zhang, Z.; Imae, T. Study of surface-enhanced infrared spectroscopy: 1. Dependence of the enhancement on thickness of metal island films and structure of chemisorbed molecules. J. Colloid Interface Sci. 2001, 233, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Imae, T. Study of surface-enhanced infrared spectroscopy: 2. Large enhancement achieved through metal–molecule–metal sandwich configurations. J. Colloid Interface Sci. 2001, 233, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Imae, T.; Takeshita, T.; Yahagi, K. In Situ adsorption investigation of hexadecyltrimethylammonium chloride on self-assembled monolayers by surface plasmon resonance and surface enhanced infrared absorption spectroscopy. Stud. Surf. Sci. Catal. 2001, 132, 477–480. [Google Scholar]
- Zhang, Z.; Imae, T. Surface enhanced infrared absorption and UV-vis spectroscopic study of a monolayer film of protoporphyrin IX zinc(II) on gold. Stud. Surf. Sci. Catal. 2001, 132, 585–588. [Google Scholar]
- Nagaoka, H.; Imae, T. Poly(amido amine) dendrimer adsorption onto 3-mercaptopropionic acid self-assembled monolayer formed on Au surface -investigation by surface enhanced spectroscopy and surface plasmon sensing. Trans. Mater. Res. Soc. Jpn. 2001, 26, 945–948. [Google Scholar]
- Zhang, Z.; Imae, T. Hydrogen-bonding stabilized self-assembled monolayer film of a functionalized diacid, protoporphyrin IX zinc(II), onto a gold surface. Nano Lett. 2001, 1, 241–243. [Google Scholar] [CrossRef]
- Zhang, Z.; Yoshida, N.; Imae, T.; Xue, Q.; Bai, M.; Jiang, J.; Liu, Z. A self-assembled monolayer of an alkanoic acid-derivatized porphyrin on gold surface: A structural investigation by surface plasmon resonance, ultraviolet–visible, and infrared spectroscopies. J. Colloid Interface Sci. 2001, 243, 382–387. [Google Scholar] [CrossRef]
- Nagaoka, H.; Imae, T. The construction of layered architectures of dendrimers—adsorption layers of amino-terminated dendrimers on 3-mercaptopropionic acid self-assembled monolayer formed on Au. Int. J. Nonlinear Sci. Numer. Simul. 2002, 3, 223–228. [Google Scholar] [CrossRef]
- Ito, M.; Imae, T.; Aoi, K.; Tsutsumiuchi, K.; Noda, H.; Okada, M. In Situ investigation of adlayer formation and adsorption kinetics of amphiphilic surface-block dendrimers on solid substrates. Langmuir 2002, 18, 9757–9764. [Google Scholar] [CrossRef]
- Ujihara, M.; Imae, T. Adsorption behaviors of poly (amido amine) dendrimers with an azacrown core and long alkyl chain spacers on solid substrates. J. Colloid Interface Sci. 2006, 293, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 2006, 96, 113002. [Google Scholar] [CrossRef] [PubMed]
- Mitamura, K.; Imae, T.; Tian, S.; Knoll, W. Surface plasmon fluorescence investigation of energy-transfer-controllable organic thin films. Langmuir 2008, 24, 2266–2270. [Google Scholar] [CrossRef] [PubMed]
- Tam, F.; Goodrich, G.P.; Johnson, B.R.; Halas, N.J. Plasmonic enhancement of molecular fluorescence. Nano Lett. 2007, 7, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Aizpurua, J.; Kall, M.; Apell, P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 2000, 62, 4318–4324. [Google Scholar] [CrossRef]
- Moskovits, M. Surface-enhanced Raman spectroscopy: A brief retrospective. J. Raman Spectrosc. 2005, 36, 485–496. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 2007, 107, 4797–4862. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Kuang, H.; Xu, C.; Ma, W.; Wang, L.; Kotov, N.A. Regiospecific plasmonic assemblies for In Situ raman spectroscopy in live cells. J. Am. Chem. Soc. 2012, 134, 1699–1709. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Liu, G.L.; Kim, J.; Mejia, Y.X.; Lee, L.P. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett. 2005, 5, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Orendorff, C.J.; Gearheart, L.; Jana, N.R.; Murphy, C.J. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys. Chem. Chem. Phys. 2006, 8, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cheng, L.; Zhang, L.; Jing, C.; Shi, X.; Yang, Z.; Long, Y.; Fang, J. Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au–Ag alloy nanourchins. Nanoscale 2014, 6, 2567–2572. [Google Scholar] [CrossRef] [PubMed]
- Kalachyova, Y.; Mares, D.; Jerabek, V.; Zaruba, K.; Ulbrich, P.; Lapcak, L.; Svorcik, V.; Lyutakov, O. The effect of silver grating and nanoparticles grafting for LSP–SPP coupling and SERS response intensification. J. Phys. Chem. C 2016, 120, 10569–10577. [Google Scholar] [CrossRef]
- Kalachyova, Y.; Mares, D.; Jerabek, V.; Ulbrich, P.; Lapcak, L.; Svorcik, V.; Lyutakov, O. Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles. Phys. Chem. Chem. Phys. 2017, 19, 14761–14769. [Google Scholar] [CrossRef] [PubMed]
- Hao, E.; Bailey, R.C.; Schatz, G.C.; Hupp, J.T.; Li, S. Synthesis and optical properties of “Branched” gold nanocrystals. Nano Lett. 2004, 4, 327–330. [Google Scholar] [CrossRef]
- Khoury, C.G.; Vo-Dinh, T. Gold nanostars for surface-enhanced Raman scattering: Synthesis, characterization and optimization. J. Phys. Chem. C 2008, 112, 18849–18859. [Google Scholar] [CrossRef]
- Jeong, G.H.; Lee, Y.W.; Kim, M.; Han, S.W. High-yield synthesis of multi-branched gold nanoparticles and their surface-enhanced Raman scattering properties. J. Colloid Interface Sci. 2009, 329, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, P.; Stockburger, M. Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem. 1984, 88, 5935–5944. [Google Scholar] [CrossRef]
- Watanabe, H.; Hayazawa, N.; Inouye, Y.; Kawata, S. DFT vibrational calculations of rhodamine 6G adsorbed on silver: Analysis of tip-enhanced Raman spectroscopy. J. Phys. Chem. B 2005, 109, 5012–5020. [Google Scholar] [CrossRef] [PubMed]
- Itoh, T.; Yoshida, K.; Biju, V.; Kikkawa, Y.; Ishikawa, M.; Ozaki, Y. Second enhancement in surface-enhanced resonance Raman scattering revealed by an analysis of anti-Stokes and Stokes Raman spectra. Phys. Rev. B 2007, 76, 085405. [Google Scholar] [CrossRef]
- Yoshida, K.I.; Itoh, T.; Biju, V.; Ishikawa, M.; Ozaki, Y. Experimental evaluation of the twofold electromagnetic enhancement theory of surface-enhanced resonance Raman scattering. Phys. Rev. B 2009, 79, 085419. [Google Scholar] [CrossRef]
- Sharma, J.; Tai, Y.; Imae, T. Biomodulation approach for gold nanoparticles: Synthesis of anisotropic to luminescent particles. J. Phys. Chem. C 2008, 112, 17033–17037. [Google Scholar] [CrossRef]
- Ujihara, M.; Imae, T. Versatile one-pot synthesis of confeito-like Au nanoparticles and their surface-enhanced Raman scattering effect. Colloids Surf. A 2013, 436, 380–385. [Google Scholar] [CrossRef]
- Ujihara, M.; Dang, N.M.; Imae, T. Fluorescence quenching of uranine on confeito-like Au nanoparticles. J. Nanosci. Nanotechnol. 2014, 14, 4906–4910. [Google Scholar] [CrossRef] [PubMed]
- Ujihara, M.; Dang, N.M.; Chang, C.C.; Imae, T. Surface-enhanced infrared absorption spectra of eicosanoic acid on confeito-like Au nanoparticle. J. Taiwan Inst. Chem. Eng. 2014, 45, 3085–3089. [Google Scholar] [CrossRef]
- Chang, C.C.; Imae, T.; Chen, L.Y.; Ujihara, M. Efficient surface enhanced Raman scattering on confeito-like gold nanoparticle-adsorbed self-assembled monolayers. Phys. Chem. Chem. Phys. 2015, 17, 32328–32334. [Google Scholar] [CrossRef] [PubMed]
- Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 2006, 110, 15700–15707. [Google Scholar] [CrossRef] [PubMed]
- Salleres, S.; Arbeloa, F.L.; Martínez, V.M.; Arbeloa, T.; Arbeloa, Í.L. Improving the fluorescence polarization method to evaluate the orientation of fluorescent systems adsorbed in ordered layered materials. J. Lumin. 2009, 129, 1336–1340. [Google Scholar] [CrossRef]
- Zhao, J.; Jensen, L.; Sung, J.; Zou, S.; Schatz, G.C.; Van Duyne, R.P. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. J. Am. Chem. Soc. 2007, 129, 7647–7656. [Google Scholar] [CrossRef] [PubMed]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface enhanced raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Charreyre, M.-T.; Zhang, P.; Winnik, M.A.; Pichot, C.; Graillat, C. Adsorption of Rhodamine 6G onto polystyrene latex particles with sulfate groups at the surface. J. Colloid Interface Sci. 1995, 170, 374–382. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ujihara, M.; Dang, N.M.; Imae, T. Surface-Enhanced Resonance Raman Scattering of Rhodamine 6G in Dispersions and on Films of Confeito-Like Au Nanoparticles. Sensors 2017, 17, 2563. https://doi.org/10.3390/s17112563
Ujihara M, Dang NM, Imae T. Surface-Enhanced Resonance Raman Scattering of Rhodamine 6G in Dispersions and on Films of Confeito-Like Au Nanoparticles. Sensors. 2017; 17(11):2563. https://doi.org/10.3390/s17112563
Chicago/Turabian StyleUjihara, Masaki, Nhut Minh Dang, and Toyoko Imae. 2017. "Surface-Enhanced Resonance Raman Scattering of Rhodamine 6G in Dispersions and on Films of Confeito-Like Au Nanoparticles" Sensors 17, no. 11: 2563. https://doi.org/10.3390/s17112563
APA StyleUjihara, M., Dang, N. M., & Imae, T. (2017). Surface-Enhanced Resonance Raman Scattering of Rhodamine 6G in Dispersions and on Films of Confeito-Like Au Nanoparticles. Sensors, 17(11), 2563. https://doi.org/10.3390/s17112563