Fast, Low-Cost and Non-Destructive Physico-Chemical Analysis of Virgin Olive Oils Using Near-Infrared Reflectance Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Reference Data
2.3. Vis/NIR Spectra Acquisition
2.4. Calibration Development and External Validation
3. Results and Discussion
3.1. Spectral Features
3.2. Descriptive Data for NIR Calibrations and Validations
3.3. Comparison of Sample Presentations
3.4. Calibration for Predicting Physico-Chemical Quality Parameters in Olive Oil
3.5. Validation for Predicting Physico-Chemical Quality Parameters in Olive Oil
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ben-Hassine, K.; Taamalli, A.; Ferchichi, S.; Mlaouah, A.; Benincasa, C.; Romano, E.; Flamini, G.; Lazzez, A.; Grati-kamoun, N.; Perri, E.; et al. Physicochemical and sensory characteristics of virgin olive oils in relation to cultivar, extraction system and storage conditions. Food Res. Int. 2013, 54, 1915–1925. [Google Scholar] [CrossRef]
- Di Giovacchino, L.; Sestili, S.; Di Vincenzo, D. Influence of olive processing on virgin olive oil quality. Eur. J. Lipid Sci. Technol. 2002, 104, 587–601. [Google Scholar] [CrossRef]
- International Olive Council. Trade Standard Applying to Olive Oils and Olive-Pomace Oils. 2015.T.15/NC No 3/Rev. 11 July 2016. Available online: www.internationaloliveoil.org/documents/viewfile/9708-norma-english (accessed on 24 July 2017).
- Official Journal of the European Union (OJEU). Commission Delegated Regulation (EU). 2015/1830 of 8 July 2015 amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. 2015, L266, 9–13. [Google Scholar]
- Jiménez-Herrera, B.; Carpio-Dueñas, A. La Cata de Aceites: Aceite de Oliva Virgen. Características Organolépticas y Análisis Sensorial (Sensory Panel Analysis of Oils: Virgin Olive Oil. Organoleptic characteristics and Sensory Evaluation); Instituto de Investigación y Formación Agraria y Pesquera, Consejería de Agricultura y Pesca, Junta de Andalucía: Sevilla, Spain, 2008; ISBN 978-84-8474-271-5. [Google Scholar]
- Pérez-Camino, M.C.; Cert, A.; Romero-Segura, A.; Cert-Trujillo, R.; Moreda, W. Alkyl esters of fatty acids a useful tool to detect soft deodorized olive oils. J. Agric. Food Chem. 2008, 56, 6740–6744. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Varo, A.; García-Olmo, J.; Pérez-Marín, M.D. Applications in fats and oils. In Near-Infrared Spectroscopy in Agriculture; Roberts, C., Workman, J., Reeves, J., Eds.; American Society of Agronomy (ASA); Crop Science Society of America (CSSA); Soil Science Society of America (SSSA): Madison, WI, USA, 2004; Volume 667, pp. 487–558. ISBN 0-89118-155-5. [Google Scholar]
- Gómez-Caravaca, A.M.; Maggio, R.M.; Cerretani, L. Review: Chemometric applications to assess quality and critical parameters of virgin and extra-virgin olive oil. Anal. Chim. Acta 2016, 913, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Varo, A.; Cobo, C.; García-Olmo, J.; Sánchez-Pineda, M.T.; Alcalá, R.; Horcas, J.M.; Jiménez, A. The feasibility of near infrared spectroscopy for olive oil quality control. In Proceedings of the 9th International Conference on Near Infrared Spectroscopy; Davies, A.M.C., Giangiacomo, R., Eds.; NIR Publications: Chichester, UK, 2000; pp. 867–871. ISBN 9780952866619. [Google Scholar]
- European Union. Commission Regulation (EEC). No 2568/91 of 11 July 1991 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. OJ L 1991, 248, 1–83. [Google Scholar]
- Casale, M.; Simonetti, R. Review: Near infrared spectroscopy for analyzing olive oils. J. Near Infrared Spec. 2014, 22, 50–80. [Google Scholar] [CrossRef]
- Shenk, J.S.; Westerhaus, M.O. Analysis of Agriculture and Food Products by Near Infrared Reflectance Spectroscopy; Monograph; NIRSystems, Inc.: Silver Spring, MD, USA, 1995. [Google Scholar]
- Mailer, R.J. Rapid evaluation of olive oil quality by NIR reflectance spectroscopy. J. Am. Oil Chem. Soc. 2004, 81, 823–827. [Google Scholar] [CrossRef]
- Armenta, S.; Moros, J.; Garrigues, S.; De la Guardia, M. The use of Near-Infrared Spectrometry in the olive oil industry. Crit. Rev. Food Sci. Nutr. 2010, 50, 567–582. [Google Scholar] [CrossRef] [PubMed]
- Cayuela-Sánchez, J.A.; Moreda, W.; García, J.M. Rapid determination of olive oil oxidative stability and its major quality parameters using VIS/NIR transmittance spectroscopy. J. Agric. Food Chem. 2013, 61, 8056–8062. [Google Scholar] [CrossRef] [PubMed]
- Gertz, C. Rapid assessment of quality parameters in olive oil using FTNIR and conventional standard methods. In Authentification of Olive Oil Workshop; European Commission: Madrid, Spain, 2013; Available online: http://ec.europa.eu/agriculture/events/2013/olive-oil-workshop/proceedings_en.pdf (accessed on 24 July 2017).
- Inarejos-García, A.M.; Gómez-Alonso, S.; Fregapane, G.; Salvador, M.D. Evaluation of minor components, sensory characteristics and quality of virgin olive oil by near infrared (NIR) spectroscopy. Food Res. Int. 2013, 50, 250–258. [Google Scholar] [CrossRef]
- Manley, M.; Eberle, K. Comparison of Fourier transform near infrared spectroscopy partial least square regression models for South African extra virgin olive oil using spectra collected on two spectrophotometers at different resolution and path lengths. J. Near Infrared Spectrosc. 2006, 14, 111–126. [Google Scholar] [CrossRef]
- Official Journal of the European Union (ODUE). Commission Implementing Regulation (EU). No 1348/2013 of 16 December 2013 amending Regulation (EEC). No. 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. OJ L 2013, 338, 31–67. [Google Scholar]
- Ministerio de la Presidencia. Métodos Oficiales de Análisis de Aceites y Grasas, Cereales y Derivados, Productos Lácteos y Productos Derivados de la Uva (Spanish Official Analytical Methods for Oils and Fats, Cereals, Dairy Products and Enological Products); Ministerio de la Presidencia: Madrid, Spain, 1977; p. 15803. (In Spanish) [Google Scholar]
- International Standard Organization. ISO 663:2007, Animal and Vegetable Fats and Oils—Determination of Insoluble Impurities Content. 2007. Available online: http://www.iso.org/iso/catalogue_detail.htm?csnumber=44014 (accessed on 21 October 2017).
- Infrasoft International. The Complete Software Solution Using a Single Screen for Routine Analysis, Robust Calibrations and Networking; Manual, FOSS NIRSystems/TECATOR; Infrasoft International: Silver Spring, MD, USA, 2000. [Google Scholar]
- Shenk, J.S.; Westerhaus, M.O. Population structuring of near infrared spectra and modified partial least squares regression. Crop Sci. 1991, 31, 1548–1555. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-trending of near infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Shenk, J.S.; Westerhaus, M.O. Routine Operation, Calibration, Development and Network System Management Manual; NIRSystems, Inc.: Silver Spring, MD, USA, 1995. [Google Scholar]
- Shenk, J.S.; Westerhaus, M.O. Calibration the ISI way. In Near Infrared Spectroscopy: The Future Waves: Proceedings of the 7th Intern Ational Conference on Near Infrared Spectroscopy; Davies, A.M.C., Williams, P.C., Eds.; NIR Publications: Chichester, UK, 1996; pp. 198–202. ISBN 978-0952866602. [Google Scholar]
- Williams, P.C. Implementation of near-infrared technology. In Near-Infrared Technology in the Agricultural and Food Industries; Williams, P.C., Norris, K.H., Eds.; AACC, Inc.: St. Paul, MN, USA, 2001; pp. 145–169. ISBN 978-1891127243. [Google Scholar]
- Fearn, T. Comparing standard deviations. NIR News 1996, 7, 5–6. [Google Scholar] [CrossRef]
- Fearn, T. Comparing standard deviations (continued). NIR News 2009, 20, 24–25. [Google Scholar] [CrossRef]
- Naes, T.; Isaksson, T.; Fearn, T.; Davies, A. A User-Friendly Guide to Multivariate Calibration and Classification; NIR Publications: Chichester, UK, 2002; ISBN 978-0952866626. [Google Scholar]
- Windham, W.R.; Mertens, D.R.; Barton II, F.E. Protocol for NIRS calibration: sample selection and equation development and validation. In Near Infrared Spectroscopy (NIRS): Analysis of Forage Quality; Martens, G.C., Shenk, J.S., Barton II, F.E., Eds.; Government Printing Office: Washington, DC, USA, 1989; Volume 643, pp. 96–103, ASIN B0000EHJJF. [Google Scholar]
- Shenk, J.S.; Workman, J.; Westerhaus, M. Application of NIR spectroscopy to agricultural products. In Handbook of near Infrared Analysis, 2nd ed.; Burns, D.A., Ciurczac, E.W., Eds.; Marcel Dekker: New York, NY, USA, 2001; pp. 419–474. ISBN 978-0849373930. [Google Scholar]
- McClure, W.F. Making light work: Lighting new frontiers. In Making Light Work: Advances in Near Infrared Spectroscopy; Murray, I., Cowe, I.A., Eds.; VCH: London, UK, 1992; pp. 1–13. ISBN 978-3527284986. [Google Scholar]
- Chen, Y.S.; Chen, A.O. Quality analysis and purity examination of edible vegetable oils by near infrared transmittance spectroscopy. In Leaping Ahead with Near Infrared Spectroscopy; Batten, G.D., Flinn, P.C., Welsh, L., Blakeney, A.B., Eds.; NIR Spectroscopy Group; Royal Australian Chemistry Institute: Melbourne, Australia, 1995; pp. 316–323. ISBN 0909589828. [Google Scholar]
- Fearn, T. The overuse of R2. NIR News 2014, 25, 32. [Google Scholar] [CrossRef]
- Dardenne, P. Some considerations about NIR spectroscopy: Closing speech at NIR-2009. NIR News 2010, 21, 8–14. [Google Scholar] [CrossRef]
- Esbensen, H.K.; Geladi, P.; Larsen, A. The RPD myth. NIR News 2014, 5, 24–28. [Google Scholar] [CrossRef]
- Armenta, S.; Garrigues, S.; De la Guardia, M. Determination of edible oil parameters by near infrared spectrometry. Anal. Chim. Acta 2007, 596, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Marín, D.; Garrido-Varo, A.; De Pedro, E.; Guerrero-Ginel, J.E. Chemometric utilities to achieve robustness in liquid NIRS calibrations: Application to pig fat analysis. Chemom. Intell. Lab. Syst. 2007, 87, 241–246. [Google Scholar] [CrossRef]
- Burns, D.A. Indicator variables. How they may save time and money in NIRS analysis. In Handbook of near Infrared Analysis, 2nd ed.; Burns, D.A., Ciurczac, E.W., Eds.; Marcel Dekker: New York, NY, USA, 2001; pp. 351–362. [Google Scholar]
- Dabbou, S.; Gharbi, I.; Dabbou, S.; Brahmi, F.; Nakbi, A. Impact of packaging material and storage time on olive oil quality. Afr. J. Biotechnol. 2011, 10, 16937–16947. [Google Scholar]
- Wan, P.J. Properties of fats and oils. In Introduction to Fats and Oils Technology, 1st ed.; Wan, P.J., Ed.; AOAC Press: Champaign, IL, USA, 1991; pp. 19–49. ISBN 978-0935315356. [Google Scholar]
- Engelsen, S.B. Explorative spectrometric evaluations of frying oil deterioration. J. Am. Oil Chem. Soc. 1997, 74, 1495–1508. [Google Scholar] [CrossRef]
- Civantos, L.; Contreras-Carazo, R.J.; Grana-Gil, R.M. Obtención del Aceite de Oliva Virgen (Virgin Olive Oil Extraction); Agricola Espanola: Madrid, Spain, 2008; ISBN 978-8485441181. (In Spanish) [Google Scholar]
- European Union. Commission Regulation (EU). No 61/2011 of 24 January 2011 amending Regulation (EEC). No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. OJ L 2011, 23, 1–14. [Google Scholar]
- Fearn, T. Assessing calibrations: SEP, RPD, RER and R2. NIR News 2002, 13, 12–14. [Google Scholar] [CrossRef]
- Jiménez-Márquez, A.; Molina-Díaz, A.; Pascual-Reguera, M.I. Using optical NIR sensor for on-line virgin olive oils characterization. Sens. Actuator B 2005, 107, 64–68. [Google Scholar] [CrossRef]
- Osborne, B.G.; Fearn, T.; Hindle, P. Practical NIR Spectroscopy with Applications in Food and Beverage Analysis; Longman Scientific and Technical: London, UK, 1993; ISBN 978-0582099463. [Google Scholar]
Parameter | Set | Number of Samples | Range | Mean | SD | CV (%) |
---|---|---|---|---|---|---|
Free acidity (% in oleic acid) | Calibration | 359 | 0.10–5.70 | 0.41 | 0.64 | 156.10 |
Validation | 100 | 0.10–2.40 | 0.33 | 0.33 | 100.00 | |
Peroxide value (meq/kg) | Calibration | 359 | 1.60–44.50 | 6.30 | 3.82 | 60.63 |
Validation | 100 | 2.80–14.90 | 6.14 | 2.29 | 37.30 | |
K232 (AU) | Calibration | 359 | 1.37–5.42 | 1.76 | 0.31 | 17.61 |
Validation | 100 | 1.40–2.28 | 1.74 | 0.18 | 10.34 | |
K270 (AU) | Calibration | 359 | 0.07–0.41 | 0.13 | 0.03 | 23.08 |
Validation | 100 | 0.08–0.20 | 0.12 | 0.02 | 16.67 | |
Alkyl esters (mg/kg) | Calibration | 359 | 3.00–610.00 | 52.07 | 72.76 | 139.73 |
Validation | 100 | 3.00–170.00 | 39.67 | 36.80 | 92.77 | |
Ethyl esters (mg/kg) | Calibration | 359 | 1.00–461.00 | 29.24 | 49.20 | 168.26 |
Validation | 100 | 1.00–116.40 | 21.36 | 23.57 | 110.35 | |
Moisture and volatile matter (% m/m) | Calibration | 283 | 0.01–0.63 | 0.09 | 0.06 | 66.67 |
Validation | 66 | 0.01–0.27 | 0.08 | 0.06 | 75.00 | |
Insoluble impurities in light petroleum (% m/m) | Calibration | 283 | 0.01–0.31 | 0.04 | 0.05 | 125.00 |
Validation | 66 | 0.01–0.17 | 0.04 | 0.04 | 100.00 |
Parameter | SECV Spinning Cup | SECV Static Cup | F | Fcritical |
---|---|---|---|---|
Acidity (% in oleic acid) | 0.074 | 0.070 | 1.14 | 1.09 |
Peroxide index (meq/kg) | 2.675 | 2.615 | 1.05 | 1.09 |
K232 (AU) | 0.196 | 0.208 | 1.13 | 1.09 |
K270 (AU) | 0.022 | 0.022 | 1.02 | 1.09 |
Alkyl esters (mg/kg) | 46.71 | 44.79 | 1.08 | 1.09 |
Ethyl esters (mg/kg) | 34.69 | 33.53 | 1.07 | 1.09 |
Moisture and volatile matter (% m/m) | 0.053 | 0.052 | 1.04 | 1.10 |
Insoluble impurities in light petroleum (% m/m) | 0.037 | 0.040 | 1.13 | 1.10 |
Parameter | N | PLS Terms | Mean | SD | SEC | r2c | SECV | r2cv | RPD | RER |
---|---|---|---|---|---|---|---|---|---|---|
Acidity (% oleic acid) 1 | 348 | 16 | 0.36 | 0.47 | 0.05 | 0.99 | 0.06 | 0.98 | 7.70 | 38.33 |
Peroxide index (meq/kg) 2 | 345 | 12 | 5.97 | 2.82 | 1.17 | 0.83 | 1.40 | 0.76 | 2.02 | 8.64 |
K232 (AU) 3 | 342 | 11 | 1.72 | 0.18 | 0.09 | 0.75 | 0.12 | 0.62 | 1.50 | 7.33 |
K270 (AU) 4 | 344 | 11 | 0.12 | 0.02 | 0.01 | 0.67 | 0.01 | 0.56 | 2.24 | 12.00 |
Alkyl esters (mg/kg) 5 | 334 | 9 | 38.97 | 37.80 | 17.36 | 0.79 | 19.52 | 0.74 | 1.94 | 8.56 |
Ethyl esters (mg/kg) 6 | 340 | 12 | 21.58 | 24.43 | 10.91 | 0.80 | 12.75 | 0.73 | 1.92 | 9.05 |
Moisture and volatile matter (% m/m) 7 | 267 | 11 | 0.08 | 0.05 | 0.02 | 0.71 | 0.03 | 0.53 | 1.50 | 8.67 |
Insoluble impurities in light petroleum (% m/m) 8 | 260 | 6 | 0.03 | 0.03 | 0.02 | 0.71 | 0.02 | 0.61 | 1.46 | 8.00 |
Parameter | N | SEP | Bias | Bias Limit | SEP(C) | SEP(C) Limit | r2v | Slope |
---|---|---|---|---|---|---|---|---|
Acidity (% oleic acid) | 100 | 0.06 | 0.01 | ±0.03 | 0.06 | 0.07 | 0.97 | 0.95 |
Peroxide index (meq/kg) | 100 | 1.31 | 0.05 | ±0.70 | 1.31 | 1.52 | 0.68 | 0.92 |
K232 (AU) | 100 | 0.10 | 0.01 | ±0.05 | 0.10 | 0.12 | 0.69 | 1.10 |
K270 (AU) | 100 | 0.01 | 0.00 | ±0.01 | 0.01 | 0.01 | 0.62 | 1.04 |
Alkyl esters (mg/kg) | 100 | 22.29 | 0.43 | ±10.42 | 22.39 | 22.57 | 0.64 | 0.91 |
Ethyl esters (mg/kg) | 100 | 13.63 | −1.57 | ±6.55 | 13.60 | 14.18 | 0.67 | 0.96 |
Moisture and volatile matter (% m/m) | 66 | 0.04 | 0.00 | ±0.01 | 0.04 * | 0.03 | 0.50 * | 1.09 |
Insoluble impurities in light petroleum (% m/m) | 66 | 0.02 | 0.01 | ±0.01 | 0.02 | 0.03 | 0.65 | 1.09 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrido-Varo, A.; Sánchez, M.-T.; De la Haba, M.-J.; Torres, I.; Pérez-Marín, D. Fast, Low-Cost and Non-Destructive Physico-Chemical Analysis of Virgin Olive Oils Using Near-Infrared Reflectance Spectroscopy. Sensors 2017, 17, 2642. https://doi.org/10.3390/s17112642
Garrido-Varo A, Sánchez M-T, De la Haba M-J, Torres I, Pérez-Marín D. Fast, Low-Cost and Non-Destructive Physico-Chemical Analysis of Virgin Olive Oils Using Near-Infrared Reflectance Spectroscopy. Sensors. 2017; 17(11):2642. https://doi.org/10.3390/s17112642
Chicago/Turabian StyleGarrido-Varo, Ana, María-Teresa Sánchez, María-José De la Haba, Irina Torres, and Dolores Pérez-Marín. 2017. "Fast, Low-Cost and Non-Destructive Physico-Chemical Analysis of Virgin Olive Oils Using Near-Infrared Reflectance Spectroscopy" Sensors 17, no. 11: 2642. https://doi.org/10.3390/s17112642
APA StyleGarrido-Varo, A., Sánchez, M. -T., De la Haba, M. -J., Torres, I., & Pérez-Marín, D. (2017). Fast, Low-Cost and Non-Destructive Physico-Chemical Analysis of Virgin Olive Oils Using Near-Infrared Reflectance Spectroscopy. Sensors, 17(11), 2642. https://doi.org/10.3390/s17112642