Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations
Abstract
:1. Introduction
- (a)
- The definition of crop coefficient curves for natural area derived from eddy covariance data to be used in hydrological modelling to compute effective evapotranspiration.
- (b)
- Assessing the reliability and potentiality of using satellite data and conventional meteorological measurements for crop coefficient estimates in natural vegetated areas where eddy covariance stations are not available.
2. Materials and Methods
2.1. Penman-Monteith Equation
2.2. Sensitivity Analysis
2.3. Eddy Covariance Technique
2.4. The FAO Crop Coefficient
2.5. Crop Coefficients
2.6. Sites and Data
2.6.1. Torgnon
2.6.2. Chestnut Ridge
2.6.3. Duke Forest
2.6.4. Black Hills
2.6.5. Satellite Data
3. Results and Discussion
3.1. Results of the Sensitivity Analysis
3.2. Pasture: Torgnon
3.3. Deciduous Forest
3.3.1. Chestnut Ridge
3.3.2. Duke Forest
3.3.3. Intercomparison
3.4. Evergreen Forest: Black Hills
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Xu, C.Y.; Singh, V.P. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. J. Hydrol. 2005, 308, 105–121. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of United Nations: Rome, Italy, 1998. [Google Scholar]
- Beniston, M. Climatic Change and Its Impacts. An Overview Focusing on Switzerland; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Bocchiola, D.; Diolaiuti, G.; Soncini, A.; Mihalcea, C.; D’Agata, C.; Mayer, C.; Lambrecht, A.; Rosso, R.; Smiraglia, C. Prediction of future hydrological regimes in poorly gauged high altitude basins: The case study of the upper Indus, Pakistan. Hydrol. Earth Syst. Sci. 2011, 15, 2059–2075. [Google Scholar] [CrossRef] [Green Version]
- Diolaiuti, G.A.; Maragno, D.; D’Agata, C.; Smiraglia, C.; Bocchiola, D. Glacier retreat and climate change: Documenting the last 50 years of Alpine glacier history from area and geometry changes of Dosdè Piazzi glaciers (Lombardy Alps, Italy). Prog. Phys. Geogr. 2011, 35, 161–182. [Google Scholar] [CrossRef]
- Nijssen, B.; O’Donnell, G.M.; Hamlet, A.F.; Lettenmaier, D.P. Hydrologic Sensitivity of Global Rivers to Climate Change. Clim. Chang. 2001, 50, 143–175. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar] [PubMed]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Ravazzani, G.; Corbari, C.; Morella, S.; Gianoli, P.; Mancini, M. Modified Hargreaves-Samani equation for the assessment of reference evapotranspiration in Alpine river basins. J. Irrig. Drain. Eng. 2012, 138, 592–599. [Google Scholar] [CrossRef]
- Trajkovic, S. Temperature-based approaches for estimating reference evapotranspiration. J. Irrig. Drain. Eng. 2005, 131, 316–323. [Google Scholar] [CrossRef]
- Vanderlinden, K.; Giraldez, J.V.; Van Meirvenne, M. Assessing Reference Evapotranspiration by the Hargreaves Method in Southern Spain. J. Irrig. Drain. Eng. 2004, 130, 184–191. [Google Scholar] [CrossRef]
- Pereira, L.S.; Allen, R.A.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Gu, L.; Olsen, R.; Hollinger, D.; Running, S.; Anthony, P.; Bernhofer, C.; Davis, K.; Evans, R.; et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem scale carbon dioxide, water vapor, and energy flux densities. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Foken, T. Micrometeorology; Springer: Berlin, Germany, 2008; p. 306. [Google Scholar]
- Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, H.; Field, C.L.; et al. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef]
- Papale, D.; Reichstein, M.; Aubinet, M.; Canfora, E.; Bernhofer, C.; Kutsch, W.; Longdoz, B.; Rambal, S.; Valentini, R.; Vesala, T.; et al. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences 2006, 3, 571–583. [Google Scholar] [CrossRef]
- Bezerra, B.G.; Bergson, G.; da Silva, B.B.; Bezerra, J.R.C.; Sofiatti, V.; dos Santos, C.A.C. Evapotranspiration and crop coefficient for sprinkler-irrigated cotton crop in Apodi Plateau semiarid lands of Brazil. Agric. Water Manag. 2012, 107, 86–93. [Google Scholar] [CrossRef]
- Casa, R.; Russell, G.; Lo Cascio, B. Estimation of evapotranspiration from a field of linseed in central Italy. Agric. For. Meteorol. 2000, 104, 289–301. [Google Scholar] [CrossRef]
- Čereković, N.; Todorović, M.; Snyder, R.L.; Boari, F.; Pace, B.; Cantore, V. Evaluation of the crop coefficients for tomato crop grown in a Mediterranean climate. Opt. Méditerr. A 2010, 95, 91–94. [Google Scholar]
- Facchi, A.; Gharsallah, O.; Corbari, C.; Masseroni, C.; Mancini, M.; Gandolfi, C. Determination of maize crop coefficients in humid climate regime using the eddy covariance technique. Agric. Water Manag. 2013, 130, 131–141. [Google Scholar] [CrossRef]
- Piccinni, G.; Ko, J.; Marek, T.; Howell, T. Determination of growth-stage-specific crop coefficients (kC) of maize and sorghum. Agric. Water Manag. 2009, 96, 1698–1704. [Google Scholar] [CrossRef]
- Glenn, E.P.; Neale, C.M.U.; Hunsaker, D.J.; Nagler, P.L. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrol. Process. 2011, 25, 4050–4062. [Google Scholar] [CrossRef]
- Liu, C.; Sun, G.; McNulty, S.G.; Noormets, A.; Fang, Y. Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements. Hydrol. Earth Syst. Sci. 2017, 21, 311–322. [Google Scholar] [CrossRef]
- Irmak, S.; Kabenge, I.; Rudnick, D.; Knezevic, S.; Woodward, D.; Moravek, M. Evapotranspiration crop coefficients for mixed riparian plant community and transpiration crop coefficients for Common reed, Cottonwood and Peach-leaf willow in the Platte River Basin, Nebraska-USA. J. Hydrol. 2013, 481, 177–190. [Google Scholar] [CrossRef]
- D’Urso, G.; Menenti, M. Mapping crop coefficients in irrigated areas from Landsat TM images. Proc. SPIE 1995, 2585, 41–47. [Google Scholar]
- Er-Raki, S.; Chehbouni, A.; Guemouria, N.; Duchemin, B.; Ezzahar, J.; Hadria, R. Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agric. Water Manag. 2007, 87, 41–54. [Google Scholar] [CrossRef]
- Calera, A.; Gonzalez-Piqueras, J.; Meli, J. Monitoring barley and corn growth from remote sensing data at field scale. Int. J. Remote Sens. 2004, 25, 97–109. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, M.P.; Neal, C.M.U.; Mateos, L.; Kustas, W.P.; Prueger, J.H.; Anderson, M.C.; Li, F. A comparison of operational remote sensing-based models for estimating crop evapotranspiration. Agric. For. Meteorol. 2009, 149, 1843–1853. [Google Scholar] [CrossRef]
- Heilman, J.L.; Heilman, W.E.; Moore, D.G. Evaluating the crop coefficient using spectral reactance. Agron. J. 1982, 74, 967–971. [Google Scholar] [CrossRef]
- Hunsaker, D.J.; Pinter, P.J., Jr.; Barnes, E.M.; Kimball, B.A. Estimating cotton evapotranspiration crop coefficients with a multispectral vegetation index. Irrig. Sci. 2003, 22, 95–104. [Google Scholar] [CrossRef]
- Neale, C.M.U.; Bausch, W.; Heermann, D. Development of reflectance-based crop coefficients for corn. Trans. ASAE 1989, 32, 1891–1899. [Google Scholar] [CrossRef]
- Zhou, M.C.; Ishidaira, H.; Takeuchi, K. Comparative study of potential evapotranspiration and interception evaporation by land cover over Mekong basin. Hydrol. Process. 2008, 22, 1290–1309. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, I. Ecohydrology: A hydrologic perspective of climate soil-vegetation dynamics. Water Resour. Res. 2000, 36, 3–9. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Thom, A.S. Momentum, Mass and Heat Exchange of Plant Communities. In Vegetation and Atmosphere; Monteith, J.L., Ed.; Academic Press: London, UK, 1975; pp. 57–110. [Google Scholar]
- Jarvis, P.G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. B 1976, 273, 593–610. [Google Scholar] [CrossRef]
- Barr, A.; Morgenstern, K.; Black, T.; McCaughey, J.; Nesic, Z. Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of CO2 flux. Agric. For. Meteorol. 2006, 140, 322–337. [Google Scholar] [CrossRef]
- Garratt, J. The Atmospheric Boundary Layer; Cambridge University Press: Cambridge, UK, 1993; p. 316. [Google Scholar]
- Kaimal, J.C.; Finnigan, J.J. Atmospheric Boundary Layer Flows-Their Structure and Measurement; Oxford University Press: New York, NY, USA, 1994; p. 289. [Google Scholar]
- Aubinet, M.; Grelle, A.; Ibrom, A.; Rannik, U.; Moncrieff, J.; Foken, T.; Kowalski, A.S.; Martin, P.H.; Berbigier, P.; Bernhofer, C.; et al. Estimates of the annual net carbon and water exchange of forests: The euroflux methodology. Adv. Ecol. Res. 2000, 30, 113–175. [Google Scholar]
- Mauder, M.; Foken, T. Documentation and Instruction Manual of the Eddy Covariance Software Package TK2; University Abt Mikrometeorol: Arbeitsergebn, Bayreuth, Germany, 2004; pp. 26–42. [Google Scholar]
- Migliavacca, M.; Galvagno, M.; Cremonese, E.; Rossini, M.; Meroni, M.; Sonnentag, O.; Cogliati, S.; Manca, G.; Diotri, F.; Busetto, L.; et al. Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake. Agric. For. Meteorol. 2011, 151, 1325–1337. [Google Scholar] [CrossRef]
- Galvagno, M.; Wohlfahrt, G.; Migliavacca, M.; Cremonese, E.; Rossini, M.; Filippa, G.; Manca, G.; Siniscalco, C.; Morra di Cella, U.; Colombo, R.; et al. Phenology and carbon dioxide source/sink strength of a subalpine grassland in response to an exceptionally short snow season. Environ. Res. Lett. 2013, 8, 025008. [Google Scholar] [CrossRef]
- Baldocchi, D.; Black, T.A.; Curtis, P.S.; Falge, E.; Fuentes, J.D.; Granier, A.; Gu, L.; Knohl, A.; Pilegaard, K.; Schmid, H.P.; et al. Predicting the onset of net carbon uptake by deciduous forests with soil temperature and climate data: A synthesis of FLUXNET data. Int. J. Biometeorol. 2005, 49, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Hollinger, D.Y.; Ollinger, S.V.; Richardson, A.D.; Meyers, T.P.; Dail, D.B.; Martin, M.E.; Scott, N.A.; Arkebauer, T.J.; Baldocchi, D.D.; Clark, K.L. Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration. Glob. Chang. Biol. 2010, 16, 696–710. [Google Scholar] [CrossRef]
- Stoy, P.; Katul, G.G.; Siqueira, M.B.S.; Juang, J.Y.; Novick, K.A.; McCarthy, H.R.; Oishi, A.C.; Uebelherr, J.M.; Kim, H.S.; Oren, R. Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern U.S. Glob. Chang. Biol. 2006, 12, 1–21. [Google Scholar] [CrossRef]
- Stoy, P.; Katul, G.G.; Siqueira, M.B.S.; Juang, J.Y.; Novick, K.A.; Uebelherr, J.M.; Oren, R. An evaluation of models for partitioning eddy covariance-measured net ecosystem exchange into photosynthesis and respiration. Agric. For. Meteorol. 2006, 141, 2–18. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R.; et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef]
- Schaaf, C.; Gao, F.; Strahler, A.; Lucht, W.; Li, X.; Tsung, T.; Strugnell, N.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First operational BRDF, albedo and nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Masseroni, D.; Corbari, C.; Mancini, M. Validation of theoretical footprint models using experimental measurements of turbulent fluxes over maize fields in Po Valley. Environ. Earth Sci. 2014, 72, 1213–1225. [Google Scholar] [CrossRef]
- Zhao, P.; Lüers, J. Parameterization of Evapotranspiration Estimation for Two Typical East Asian Crops. Atmosphere 2017, 8, 111. [Google Scholar] [CrossRef]
kc-ini | kc-mid | kc-end | |||
---|---|---|---|---|---|
Pasture | |||||
Torgnon | kcFAO | 0.75 | 0.75 | 0.75 | |
2009 | kceddy | - | 0.8 | 0.47 | |
kcPenMon,sat | - | 0.76 | 0.49 | ||
2010 | kceddy | - | 0.88 | 0.43 | |
kcPenMon,sat | - | 0.76 | 0.36 | ||
kcPenMon,ground | - | 0.76 | 0.39 | ||
Deciduous Forest | |||||
Chestnut Ridge | 2007 | kcFAO | 0.15 | 0.91 | 0.15 |
kceddy | 0.19 | 0.47 | 0.2 | ||
kcPenMon,sat | 0.04 | 0.48 | 0.05 | ||
Duke Forest | 2001 | kcFAO | 0.15 | 0.8 | 0.15 |
kceddy | 0.11 | 0.51 | 0.12 | ||
kcPenMon,sat | 0.07 | 0.44 | 0.06 | ||
2002 | kcFAO | 0.15 | 0.9 | 0.15 | |
kceddy | 0.09 | 0.43 | - | ||
kcPenMon,sat | 0.04 | 0.44 | 0.07 | ||
Evergreen Forest | |||||
Black Hills | 2006 | kcFAO | 0.15 | 0.79 | 0.15 |
kceddy | 0.05 | 0.17 | 0.04 | ||
kcPenMon,sat | 0.04 | 0.20 | 0.07 | ||
2007 | kcFAO | 0.15 | 0.78 | 0.15 | |
kceddy | 0.05 | 0.18 | 0.03 | ||
kcPenMon,sat | 0.05 | 0.20 | 0.04 |
Days kc-ini | Days kc-mid | Days kc-end | ||
---|---|---|---|---|
Pasture | ||||
Torgnon | 2009 | 183–305 | ||
2010 | 143–303 | |||
Deciduous Forest | ||||
Chestnut Ridge | 2007 | 1–105 | 139–269 | 328–365 |
Duke Forest | 2001 | 1–71 | 149–297 | 320–365 |
2002 | 1–80 | 121–281 | 306–365 | |
Evergreen Forest | ||||
Black Hills | 2006 | 1–98 | 142–231 | 281–365 |
2007 | 1–98 | 189–247 | 301–365 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corbari, C.; Ravazzani, G.; Galvagno, M.; Cremonese, E.; Mancini, M. Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations. Sensors 2017, 17, 2664. https://doi.org/10.3390/s17112664
Corbari C, Ravazzani G, Galvagno M, Cremonese E, Mancini M. Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations. Sensors. 2017; 17(11):2664. https://doi.org/10.3390/s17112664
Chicago/Turabian StyleCorbari, Chiara, Giovanni Ravazzani, Marta Galvagno, Edoardo Cremonese, and Marco Mancini. 2017. "Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations" Sensors 17, no. 11: 2664. https://doi.org/10.3390/s17112664
APA StyleCorbari, C., Ravazzani, G., Galvagno, M., Cremonese, E., & Mancini, M. (2017). Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations. Sensors, 17(11), 2664. https://doi.org/10.3390/s17112664