Luminescence-Based Optical Sensors Fabricated by Means of the Layer-by-Layer Nano-Assembly Technique
Abstract
:1. Introduction
2. Luminescent Sensors Based on Encapsulated Indicators
2.1. Encapsulated Sensors for Ion Detection
2.2. Encapsulated Sensors for Dissolved Oxygen Detection
2.3. Encapsulated Sensors for Glucose and Lactate Monitoring
3. Luminophores Immobilized in Multilayer Films for Sensing Applications
3.1. LbL Luminescent Coatings for the Detection of Metal Ions
3.2. LbL Luminescent Coatings for Dissolved Oxygen Sensing
3.3. LbL Luminescent Coatings for Gaseous Oxygen Sensing
3.4. LbL Luminescent Films for Biosensing Applications
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Sun, C.; Chen, Y.; Zhang, G.; Wang, F.; Liu, G.; Ding, J. Multipoint Remote Methane Measurement System Based on Spectrum Absorption and Reflective TDM. IEEE Photonics Technol. Lett. 2016, 28, 2487–2490. [Google Scholar] [CrossRef]
- Pasinszki, T.; Krebsz, M.; Tung, T.T.; Losic, D. Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis. Sensors 2017, 17, 1919. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.H.; Tan, S.T.; Lee, H.B.; Ginting, R.T.; Oleiwi, H.F.; Yap, C.C.; Jumali, M.H.H.; Yahaya, M. Automated room temperature optical absorbance CO sensor based on In-doped ZnO nanorod. Sens. Actuators B Chem. 2017, 248, 140–152. [Google Scholar] [CrossRef]
- Del Villar, I.; Arregui, F.J.; Zamarreño, C.R.; Corres, J.M.; Bariain, C.; Goicoechea, J.; Elosua, C.; Hernaez, M.; Rivero, P.J.; Socorro, A.B.; et al. Optical sensors based on lossy-mode resonances. Sens. Actuators B Chem. 2017, 240, 174–185. [Google Scholar] [CrossRef]
- Qazi, H.H.; Bin Mohammad, A.B.; Akram, M. Recent Progress in Optical Chemical Sensors. Sensors 2012, 12, 16522–16556. [Google Scholar] [CrossRef] [PubMed]
- Baldini, F.; Bacci, M.; Cosi, F.; Del Bianco, A. Absorption-based optical-fibre oxygen sensor. Sens. Actuators B Chem. 1992, 7, 752–757. [Google Scholar] [CrossRef]
- Miki, H.; Matsubara, F.; Nakashima, S.; Ochi, S.; Nakagawa, K.; Matsuguchi, M.; Sadaoka, Y. A fractional exhaled nitric oxide sensor based on optical absorption of cobalt tetraphenylporphyrin derivatives. Sens. Actuators B Chem. 2016, 231, 458–468. [Google Scholar] [CrossRef]
- Zhang, W.; Ye, W.; Wang, C.; Li, W.; Yue, Z.; Liu, G. Silver nanoparticle arrays enhanced spectral surface plasmon resonance optical sensor. Micro Nano Lett. 2014, 9, 585–587. [Google Scholar] [CrossRef]
- Rivero, P.J.; Urrutia, A.; Goicoechea, J.; Matías, I.R.; Arregui, F.J. A Lossy Mode Resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing. Sens. Actuators B Chem. 2013, 187, 40–44. [Google Scholar] [CrossRef]
- Marques, L.; Hernandez, F.U.; Korposh, S.; Clark, M.; Morgan, S.; James, S.; Tatam, R.P. Sensitive protein detection using an optical fibre long period grating sensor anchored with silica core gold shell nanoparticles. In Proceedings of the SPIE, Santander, Spain, 2–6 June 2014; Volume 9157. [Google Scholar]
- Payne, S.J.; Fiore, G.L.; Fraser, C.L.; Demas, J.N. Luminescence oxygen sensor based on a ruthenium(II) star polymer complex. Anal. Chem. 2010, 82, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Bian, W.; Ma, J.; Liu, Q.; Wei, Y.; Li, Y.; Dong, C.; Shuang, S. A novel phosphorescence sensor for Co2+ ion based on Mn-doped ZnS quantum dots. Luminescence 2014, 29, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, L.; Rovati, L.; Fabbri, P.; Pilati, F. Disposable fluorescence optical pH sensor for near neutral solutions. Sensors 2013, 13, 484–499. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.S.; Huang, S.Y.; Zhao, B.X.; Miao, J.Y. A new rhodamine B-based lysosomal pH fluorescent indicator. Anal. Chim. Acta 2013, 788, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Ross, D.; Gaitan, M.; Locascio, L.E. Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Anal. Chem. 2001, 73, 4117–4123. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Zhi, A.; Liu, Q.; Yang, J.; Jia, G.; Shervin, J.; Tang, L.; Hu, X.; Deng, R.; Xu, C.; Zhang, G. Rapid and sensitive detection of β-agonists using a portable fluorescence biosensor based on fluorescent nanosilica and a lateral flow test strip. Biosens. Bioelectron. 2013, 50, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, T.; Murayama, S.; Tobita, S. Ratiometric molecular probes based on dual emission of a blue fluorescent coumarin and a red phosphorescent cationic iridium(III) complex for intracellular oxygen sensing. Sensors 2015, 15, 13503–13521. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, G.; Xu, J.; Wen, Y.; Lu, B.; Zhang, J.; Ding, W. Novel highly selective fluorescent sensor based on electrosynthesized poly(9-fluorenecarboxylic acid) for efficient and practical detection of iron(III) and its agricultural application. Sens. Actuators B Chem. 2016, 230, 123–129. [Google Scholar] [CrossRef]
- Xu, K.X.; Xie, X.M.; Kong, H.J.; Li, P.; Zhang, J.L.; Pang, X.B. Selective fluorescent sensors for malate anion using the complex of phenanthroline-based Eu(III) in aqueous solution. Sens. Actuators B Chem. 2014, 201, 131–137. [Google Scholar] [CrossRef]
- Kuo, S.-Y.; Li, H.-H.; Wu, P.-J.; Chen, C.-P.; Huang, Y.-C.; Chan, Y.-H. Dual colorimetric and fluorescent sensor based on semiconducting polymer dots for ratiometric detection of lead ions in living cells. Anal. Chem. 2015, 87, 4765–4771. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Li, H.; Hou, T.; Li, F. Paper-based fluorescent sensor for rapid naked-eye detection of acetylcholinesterase activity and organophosphorus pesticides with high sensitivity and selectivity. Biosens. Bioelectron. 2016, 86, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Chao, M.R.; Hu, C.W.; Chen, J.L. Glass substrates crosslinked with tetracycline-imprinted polymeric silicate and CdTe quantum dots as fluorescent sensors. Anal. Chim. Acta 2016, 925, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Hale, Z.M.; Payne, F.P. Fluorescent sensors based on tapered single-mode optical fibres. Sens. Actuators B Chem. 1994, 17, 233–240. [Google Scholar] [CrossRef]
- Shang, Z.B.; Wang, Y.; Jin, W.J. Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury(II) and iodide in aqueous solution. Talanta 2009, 78, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Chang, J.Y. Fabrication of a fluorescent sensor by organogelation: CdSe/ZnS quantum dots embedded molecularly imprinted organogel nanofibers. Sens. Actuators B Chem. 2016, 234, 122–129. [Google Scholar] [CrossRef]
- Wang, H.; He, Y. Recent advances in silicon nanomaterial-based fluorescent sensors. Sensors 2017, 17, 268. [Google Scholar] [CrossRef] [PubMed]
- Senkbeil, S.; Lafleur, J.P.; Jensen, T.G.; Kutter, J.P. Gold nanoparticle-based fluorescent sensor for the analysis of dithiocarbamate pesticides in water. In Proceedings of the 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2012, Okinawa, Japan, 28 October–1 November 2012. [Google Scholar]
- Gilliard, R.J., Jr.; Iacono, S.T.; Budy, S.M.; Moody, J.D.; Smith, D.W., Jr.; Smith, R.C. Chromophore-derivatized semifluorinated polymers for colorimetric and turn-on fluorescent anion detection. Sens. Actuators B Chem. 2009, 143, 1–5. [Google Scholar] [CrossRef]
- Hashemi, P.; Zarjani, R.A. A wide range pH optical sensor with mixture of Neutral Red and Thionin immobilized on an agarose film coated glass slide. Sens. Actuators B Chem. 2008, 135, 112–115. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Amini, M. A highly selective optical sensor for catalytic determination of ultra-trace amounts of nitrite in water and foods based on brilliant cresyl blue as a sensing reagent. Sens. Actuators B Chem. 2010, 147, 61–66. [Google Scholar] [CrossRef]
- Magna, G.; Catini, A.; Kumar, R.; Palmacci, M.; Martinelli, E.; Paolesse, R.; di Natale, C. Conductive photo-activated porphyrin-ZnO nanostructured gas sensor array. Sensors 2017, 17, 747. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.S.; Chuang, C.Y. Highly sensitive fiber-optic oxygen sensor based on palladium tetrakis (4-carboxyphenyl)porphyrin doped in ormosil. J. Luminescence 2014, 154, 475–478. [Google Scholar] [CrossRef]
- Roales, J.; Pedrosa, J.M.; Guillén, M.G.; Lopes-Costa, T.; Castillero, P.; Barranco, A.; González-Elipe, A.R. Free-base carboxyphenyl porphyrin films using a TiO2 columnar matrix: Characterization and application as NO2 sensors. Sensors 2015, 15, 11118–11132. [Google Scholar] [CrossRef] [PubMed]
- Nivens, D.A.; Zhang, Y.; Angel, S.M. A fiber-optic pH sensor prepared using a base-catalyzed organo-silica sol–gel. Anal. Chim. Acta 1998, 376, 235–245. [Google Scholar] [CrossRef]
- Sas, S.; Danko, M.; Bizovská, V.; Lang, K.; Bujdák, J. Highly luminescent hybrid materials based on smectites with polyethylene glycol modified with rhodamine fluorophore. Appl. Clay Sci. 2017, 138, 25–33. [Google Scholar] [CrossRef]
- Asadpour-Zeynali, K.; Mollarasouli, F. A novel and facile synthesis of TGA-capped CdSe@Ag2Se core-shell quantum dots as a new substrate for high sensitive and selective methyldopa sensor. Sens. Actuators B Chem. 2016, 237, 387–399. [Google Scholar] [CrossRef]
- Lu, D.; Yang, L.; Tian, Z.; Wang, L.; Zhang, J. Core-shell mesoporous silica nanospheres used as Zn2+ ratiometric fluorescent sensor and adsorbent. RSC Adv. 2012, 2, 2783–2789. [Google Scholar] [CrossRef]
- Properties and applications of proteins encapsulated within sol–gel derived materials. Anal. Chim. Acta 2002, 461, 1–36. [CrossRef]
- Guan, W.; Zhou, W.; Lu, J.; Lu, C. Luminescent films for chemo- and biosensing. Chem. Soc. Rev. 2015, 44, 6981–7009. [Google Scholar] [CrossRef] [PubMed]
- Ertekin, K.; Tepe, M.; Yenigül, B.; Akkaya, E.U.; Henden, H. Fiber optic sodium and potassium sensing by using a newly synthesized squaraine dye in PVC matrix. Talanta 2002, 58, 719–727. [Google Scholar] [CrossRef]
- Brolo, A.G.; Kwok, S.C.; Moffitt, M.G.; Gordon, R.; Riordon, J.; Kavanagh, K.L. Enhanced fluorescence from arrays of nanoholes in a gold film. J. Am. Chem. Soc. 2005, 127, 14936–14941. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, C.; MacCraith, B.D.; McEvoy, A.K. Tailoring of Sol-Gel Films for Optical Sensing of Oxygen in Gas and Aqueous Phase. Anal. Chem. 1998, 70, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.-S.; Lo, Y.-L. Fiber-optic carbon dioxide sensor based on fluorinated xerogels doped with HPTS. Sens. Actuators B Chem. 2008, 129, 120–125. [Google Scholar] [CrossRef]
- Zhao, Z.; Lu, P.; Lam, J.W.Y.; Wang, Z.; Chan, C.Y.K.; Sung, H.H.Y.; Williams, I.D.; Ma, Y.; Tang, B.Z. Molecular anchors in the solid state: Restriction of intramolecular rotation boosts emission efficiency of luminogen aggregates to unity. Chem. Sci. 2011, 2, 672–675. [Google Scholar] [CrossRef]
- Decher, G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science 1997, 277, 1232–1237. [Google Scholar] [CrossRef]
- Elzbieciak, M.; Zapotoczny, S.; Nowak, P.; Krastev, R.; Nowakowska, M.; Warszyński, P. Influence of pH on the structure of multilayer films composed of strong and weak polyelectrolytes. Langmuir 2009, 25, 3255–3259. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-H.; Haile, M.; Park, Y.T.; Malek, F.A.; Grunlan, J.C. Super Gas Barrier of All-Polymer Multilayer Thin Films. Macromolecules 2011, 44, 1450–1459. [Google Scholar] [CrossRef]
- De Acha, N.; Elosúa, C.; Matías, I.R.; Arregui, F.J. Enhancement of luminescence-based optical fiber oxygen sensors by tuning the distance between fluorophore layers. Sens. Actuators B Chem. 2017, 248, 836–847. [Google Scholar] [CrossRef]
- De Acha, N.; Elosúa, C.; Martínez, D.; Hernáez, M.; Matías, I.R.; Arregui, F.J. Comparative study of polymeric matrices embedding oxygen-sensitive fluorophores by means of Layer-by-Layer nanosassembly. Sens. Actuators B Chem. 2017, 239, 1124–1133. [Google Scholar] [CrossRef]
- Aslan, K.; Gryczynski, I.; Malicka, J.; Matveeva, E.; Lakowicz, J.R.; Geddes, C.G. Metal-enhanced fluorescence: An emerging tool in biotechnology. Curr. Opin. Biotechnol. 2005, 16, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K.; Hill, J.P.; Ji, Q. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys. Chem. Chem. Phys. 2007, 9, 2319–2340. [Google Scholar] [CrossRef] [PubMed]
- McShane, M.J.; Brown, J.Q.; Guice, K.B.; Lvov, Y.M. Polyelectrolyte Microshells as Carriers for Fluorescent Sensors: Loading and Sensing Properties of a Ruthenium-Based Oxygen Indicator. J. Nanosci. Nanotechnol. 2002, 2, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Arregui, F.J. Sensors Based on Nanostructured Materials; Springer: New York, NY, USA, 2009; ISBN 978-0-38-777752-8. [Google Scholar]
- Duchesne, T.A.; Brown, J.Q.; Guice, K.B.; Lvov, Y.M.; McShane, M.J. Encapsulation and stability properties of nanoengineered polyelectrolyte capsules for use as fluorescent sensors. Sens. Mater. 2002, 14, 293–308. [Google Scholar]
- McShane, M.J. Potential for glucose monitoring with nanoengineered fluorescent biosensors. Diabetes Technol. Ther. 2002, 4, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Bornhoeft, L.R.; Biswas, A.; McShane, M.J. Composite hydrogels with engineered microdomains for optical glucose sensing at low oxygen conditions. Biosensors 2017, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Gil, P.; Nazarenus, M.; Ashraf, S.; Parak, W.J. PH-sensitive capsules as intracellular optical reporters for monitoring lysosomal pH changes upon stimulation. Small 2012, 8, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Nagaraja, A.T.; McShane, M.J. Fabrication of nanocapsule carriers from multilayer-coated vaterite calcium carbonate nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 21193–21201. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Rong, X.; Chen, L.; Ma, H.; Tao, G. Layer-by-layer self-assembly xylenol orange functionalized CdSe/CdS quantum dots as a turn-on fluorescence lead ion sensor. Talanta 2013, 114, 110–116. [Google Scholar] [CrossRef] [PubMed]
- McShane, M.; Ritter, D. Microcapsules as optical biosensors. J. Mater. Chem. 2010, 20, 8189–8193. [Google Scholar] [CrossRef]
- Antipov, A.A.; Shchukin, D.; Fedutik, Y.; Petrov, A.I.; Sukhorukov, G.B.; Möhwald, H. Carbonate microparticles for hollow polyelectrolyte capsules fabrication. Coll. Surf. A Physicochem. Eng. Asp. 2003, 224, 175–183. [Google Scholar] [CrossRef]
- Biswas, A.; Banerjee, S.; Gart, E.V.; Nagaraja, A.T.; McShane, M.J. Gold Nanocluster Containing Polymeric Microcapsules for Intracellular Ratiometric Fluorescence Biosensing. ACS Omega 2017, 2, 2499–2506. [Google Scholar] [CrossRef]
- Zhang, G.; Shu, F.P.; Robinson, C.J. Design and characterization of a nano-encapsulated self-referenced fluorescent nitric oxide sensor for wide-field optical imaging. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology, Lyon, France, 22–26 August 2007. [Google Scholar]
- Brown, J.Q.; Lvov, Y.M.; McShane, M.J. Nanoengineered polyelectrolyte microcapsules as fluorescent potassium ion sensors. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology, Houston, TX, USA, 23–26 October 2002; Volume 2. [Google Scholar]
- Lee, D.; Rubner, M.F.; Cohen, R.E. Formation of nanoparticle-loaded microcapsules based on hydrogen-bonded multilayers. Chem. Mater. 2005, 17, 1099–1105. [Google Scholar] [CrossRef]
- Marinakos, S.M.; Novak, J.P.; Brousseau, L.C., III; House, A.B.; Edeki, E.M.; Feldhaus, J.C.; Feldheim, D.L. Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation. J. Am. Chem. Soc. 1999, 121, 8518–8522. [Google Scholar] [CrossRef]
- Donath, E.; Sukhorukov, G.B.; Caruso, F.; Davis, S.A.; Möhwald, H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew. Chem. Int. Ed. 1998, 37, 2201–2205. [Google Scholar] [CrossRef]
- Sadovoy, A.; Teh, C. Encapsulated biosensors for advanced tissue diagnostics. In Woodhead Publishing Series in Biomaterials; Meglinski, I., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 321–330. ISBN 978-0-85-709662-3. [Google Scholar]
- He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31, 3657–3666. [Google Scholar] [CrossRef] [PubMed]
- Sukhorukov, G.B.; Donath, E.; Lichtenfeld, H.; Knippel, E.; Knippel, M.; Budde, A.; Möhwald, H. Layer-by-layer self assembly of polyelectrolytes on colloidal particles. Coll. Surf. A Physicochem. Eng. Asp. 1998, 137, 253–266. [Google Scholar] [CrossRef]
- Bertrand, P.; Jonas, A.; Laschewsky, A.; Legras, R. Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: Suitable materials, structure and properties. Macromol. Rapid Commun. 2000, 21, 319–348. [Google Scholar] [CrossRef]
- Shiratori, S.S.; Rubner, M.F. pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 2000, 33, 4213–4219. [Google Scholar] [CrossRef]
- Mendelsohn, J.D.; Barrett, C.J.; Chan, V.V.; Pal, A.J.; Mayes, A.M.; Rubner, M.F. Fabrication of microporous thin films from polyelectrolyte multilayers. Langmuir 2000, 16, 5017–5023. [Google Scholar] [CrossRef]
- Zhang, G.; Shitole, P.S.; Pujari, R.A.; Charnani, V.S.; McShane, M.J.; Robinson, C.J. Intrinsic optical signal imaging of a ratiometric fluorescence oxygen nanosensor. In Proceedings of the 2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology, Oahu, HI, USA, 12–15 May 2005; Volume 2005. [Google Scholar]
- Guice, K.B.; Lvov, Y.M.; McShane, M.J. Nanoengineered microcapsules for the fluorescent sensing of oxygen. In Proceedings of the 2nd Joint Conference of the IEEE Engineering in Medicine and Biology Society and the Biomedical Engineering Society, Annual International Conference of the IEEE Engineering in Medicine and Biology, Houston, TX, USA, 23–26 October 2002; Volume 2. [Google Scholar]
- Zhi, Z.L.; Khan, F.; Pickup, J.C. Multilayer nanoencapsulation: A nanomedicine technology for diabetes research and management. Diabetes Res. Clin. Pract. 2013, 100, 162–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxl, T.; Khan, F.; Matthews, D.R.; Zhi, Z.L.; Rolinski, O.; Ameer-Beg, S.; Pickup, J. Fluorescence lifetime spectroscopy and imaging of nano-engineered glucose sensor microcapsules based on glucose/galactose-binding protein. Biosens. Bioelectron. 2009, 24, 3229–3234. [Google Scholar] [CrossRef] [PubMed]
- Acquah, I.; Roh, J.; Ahn, D.J. Dual-fluorophore silica microspheres for ratiometric acidic pH sensing. Macromol. Res. 2017, 25, 950–955. [Google Scholar] [CrossRef]
- Afkhami, A.; Soltani-Felehgari, F.; Madrakian, T.; Ghaedi, H.; Rezaeival, M. Fabrication and application of a new modified electrochemical sensor using nano-silica and a newly synthesized Schiff base for simultaneous determination of Cd2+, Cu2+ and Hg2+ ions in water and some foodstuff samples. Anal. Chim. Acta 2013, 771, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Duchesne, T.A.; Brown, J.Q.; Guice, K.B.; Nayak, S.R.; Lvov, Y.M.; McShane, M.J. Nanoassembled fluorescent microshells as biochemical sensors. In Proceedings of the SPIE—The International Society for Optical Engineering, San Jose, CA, USA, 23 May 2002; Volume 4624. [Google Scholar]
- Stouwdam, J.W.; Van Veggel, F.C.J.M. Near-infrared Emission of Redispersible Er3+, Nd3+, and Ho3+ Doped LaF3 Nanoparticles. Nano Lett. 2002, 2, 733–737. [Google Scholar] [CrossRef]
- Kömpe, K.; Borchert, H.; Storz, J.; Lobo, A.; Adam, S.; Möller, T.; Haase, M. Green-Emitting CePO4:Tb/LaPO4 Core-Shell Nanoparticles with 70 % Photoluminescence Quantum Yield. Angew. Chem. Int. Ed. 2003, 42, 5513–5516. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Xu, X.-Y.; He, D.-F.; Li, M.; Liang, L.-B.; Yu, X.-F. Fabrication of rare-earth/quantum-dot nanocomposites for color-tunable sensing applications. J. Nanopart. Res. 2011, 13, 525–531. [Google Scholar] [CrossRef]
- Pujari, R.A.; Shitole, P.S.; Charnani, V.S.; McShane, M.J.; Robinson, C.J. Wide-field extrinsic optical signal imaging of fluorescence potassium sensors. In Proceedings of the 2006 3rd IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Arlington, VA, USA, 6–9 April 2006; Volume 2006. [Google Scholar]
- Brown, J.Q.; Guice, K.B.; McShane, M.J. Internally-Referenced Chemical Transducers Using Molecular Probes Assembled on Fluorescent Nanoparticles. Proceedings of The IEEE SENSORS, Toronto, ON, Canada, 22–24 October 2003; Volume 2. [Google Scholar]
- Brown, J.Q.; McShane, M.J. Core-referenced ratiometric fluorescent potassium ion sensors using self-assembled ultrathin films on europium nanoparticles. IEEE Sens. J. 2005, 5, 1197–1205. [Google Scholar] [CrossRef]
- Kazakova, L.I.; Shabarchina, L.I.; Anastasova, S.; Pavlov, A.M.; Vadgama, P.; Skirtach, A.G.; Sukhorukov, G.B. Chemosensors and biosensors based on polyelectrolyte microcapsules containing fluorescent dyes and enzymes. Anal. Bioanal. Chem. 2013, 405, 1559–1568. [Google Scholar] [CrossRef] [PubMed]
- Guice, K.B.; Caldorera, M.E.; McShane, M.J. Nanoscale internally referenced oxygen sensors produced from self-assembled nanofilms on fluorescent nanoparticles. J. Biomed. Opt. 2005, 10, 064031. [Google Scholar] [CrossRef] [PubMed]
- Pickup, J.C.; Zhi, Z.-L.; Khan, F.; Saxl, T.E. Nanomedicine in diabetes management: Where we are now and where next. Expert Rev. Endocrinol. Metab. 2010, 5, 791–794. [Google Scholar] [CrossRef]
- Chinnayelka, S.; McShane, M.J. Competitive binding assays in microcapsules as “smart tattoo” biosensors. In Proceedings of the IEEE SENSORS, Irvine, CA, USA, 30 October–3 November 2005; Volume 2005. [Google Scholar]
- Zamarreño, C.R.; Bravo, J.; Goicoechea, J.; Matias, I.R.; Arregui, F.J. Response time enhancement of pH sensing films by means of hydrophilic nanostructured coatings. Sens. Actuators B Chem. 2007, 128, 138–144. [Google Scholar] [CrossRef]
- Chang-Yen, D.A.; Gale, B.K. An Integrated Optical Glucose Sensor Fabricated Using PDMS Waveguides on a PDMS Substrate. In Proceedings of the SPIE—The International Society for Optical Engineering, San Jose, CA, USA, 23 December 2003; Volume 5345. [Google Scholar]
- Chu, C.-S.; Chu, S.-W. Optical oxygen sensor based on time-resolved fluorescence. In Proceedings of the SPIE—The International Society for Optical Engineering, Jeju, Korea, 1 July 2015; Volume 9655. [Google Scholar]
- Chan, W.H.; Yang, R.H.; Wang, K.M. Development of a mercury ion-selective optical sensor based on fluorescence quenching of 5,10,15,20-tetraphenylporphyrin. Anal. Chim. Acta 2001, 444, 261–269. [Google Scholar] [CrossRef]
- Lee, D.; Jung, J.; Bilby, D.; Kwon, M.S.; Yun, J.; Kim, J. A novel optical ozone sensor based on purely organic phosphor. ACS Appl. Mater. Interfaces 2015, 7, 2993–2997. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, N.H.; Salleh, M.M.; Yahaya, M. Enhanced the Performance of Fluorescence Gas Sensor of Porphyrin Dye by Using TiO2 Nanoparticles. Adv. Mater. Res. 2008, 55–57, 269–272. [Google Scholar] [CrossRef]
- Ali, R.; Lang, T.; Saleh, S.M.; Meier, R.J.; Wolfbeis, O.S. Optical sensing scheme for carbon dioxide using a solvatochromic probe. Anal. Chem. 2011, 83, 2846–2851. [Google Scholar] [CrossRef] [PubMed]
- Safavi, A.; Bagheri, M. Novel optical pH sensor for high and low pH values. Sens. Actuators B Chem. 2003, 90, 143–150. [Google Scholar] [CrossRef]
- Wencel, D.; MacCraith, B.D.; McDonagh, C. High performance optical ratiometric sol–gel-based pH sensor. Sens. Actuators B Chem. 2009, 139, 208–213. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kumar, J.; Tripathy, S.K. Fluorescence quenching based thin film sensors employing electrostatic layer-by-layer self-assembly. In Proceedings of the Materials Research Society Symposium, Boston, MA, USA, Fall 2000; pp. 891–896. [Google Scholar]
- Lee, S.H.; Kumar, J.; Tripathy, S.K. Thin film optical sensors employing polyelectrolyte assembly. Langmuir 2000, 16, 10482–10489. [Google Scholar] [CrossRef]
- Caselli, M. Porphyrin-based electrostatically self-assembled multilayers as fluorescent probes for mercury(ii) ions: A study of the adsorption kinetics of metal ions on ultrathin films for sensing applications. RSC Adv. 2015, 5, 1350–1358. [Google Scholar] [CrossRef]
- Qin, C.; Cheng, Y.; Wang, L.; Jing, X.; Wang, F. Phosphonate-Functionalized Polyfluorene as a Highly Water-Soluble Iron(III) Chemosensor. Macromolecules 2008, 41, 7798–7804. [Google Scholar] [CrossRef]
- Li, Y.; Huang, H.; Li, Y.; Su, X. Highly sensitive fluorescent sensor for mercury (II) ion based on layer-by-layer self-assembled films fabricated with water-soluble fluorescent conjugated polymer. Sens. Actuators B Chem. 2013, 188, 772–777. [Google Scholar] [CrossRef]
- Li, Y.; Huang, H.; Li, Y.; Su, X. Sensitive Hg (II) ion detection by fluorescent multilayer films fabricated with quantum dots. Sens. Actuators B Chem. 2009, 139, 476–482. [Google Scholar] [CrossRef]
- Ma, Q.; Ha, E.; Yang, F.; Su, X. Synchronous determination of mercury (II) and copper (II) based on quantum dots-multilayer film. Anal. Chim. Acta 2011, 701, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Ma, Q.; Yu, W.; Su, X. Naked-eye colorimetric analysis of Hg2+ with bi-color CdTe quantum dots multilayer films. Talanta 2011, 84, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, H.M.; Duarte, A.J.; Davis, F.; Higson, S.P.; da Silva, J.C.E. Layer-by-layer immobilization of carbon dots fluorescent nanomaterials on single optical fiber. Anal. Chim. Acta 2012, 735, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.-H.; Chen, J.; Liu, Q.; Wark, S.E.; Son, D.H.; Batteas, J.D. Ultrasensitive Copper(II) Detection Using Plasmon-Enhanced and Photo-Brightened Luminescence of CdSe Quantum Dots. Anal. Chem. 2010, 82, 3671–3678. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.-H.; Chen, J.; Wark, S.E.; Skiles, S.L.; Son, D.H.; Batteas, J.D. Using patterned arrays of metal nanoparticles to probe plasmon enhanced luminescence of CdSe quantum dots. ACS Nano 2009, 3, 1735–1744. [Google Scholar] [CrossRef] [PubMed]
- Kramarenko, G.G.; Hummel, S.G.; Martin, S.M.; Buettner, G.R. Ascorbate reacts with singlet oxygen to produce hydrogen peroxide. Photochem. Photobiol. 2006, 82, 1634–1637. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.R.; Koh, K.; Kang, N.L.; Lee, J. Highly Sensitive Fluorescent Probes for the Quantitative Determination of Singlet Oxygen (1O2). Bull. Korean Chem. Soc. 2012, 33, 1608–1612. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Zheng, Z.; Yue, X.; Dai, Z.; Liu, S.; Tang, Z. Glucose biosensor based on nanocomposite films of CdTe quantum dots and glucose oxidase. Langmuir 2009, 25, 6580–6586. [Google Scholar] [CrossRef] [PubMed]
- Grant, P.S.; Kaul, S.; Chinnayelka, S.; McShane, M.J. Fiber Optic Biosensors Comprising Nanocomposite Multilayered Polymer and Nanoparticle Ultrathin Films. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology, Cancun, Mexico, 17–21 September 2003; Volume 4. [Google Scholar]
- Grant, P.; Barnidge, M.; McShane, M. Spectroscopic Fiber Probes for Chemical Sensing Based on LbL Self Assembled Ultra-Thin Films. In Proceedings of the IEEE SENSORS, Toronto, ON, Canada, 22–24 October 2003; Volume 2, pp. 895–898. [Google Scholar]
- Chang-Yen, D.A.; Lvov, Y.; McShane, M.J.; Gale, B.K. Electrostatic self-assembly of a ruthenium-based oxygen sensitive dye using polyion–dye interpolyelectrolyte formation. Sens. Actuators B Chem. 2002, 87, 336–345. [Google Scholar] [CrossRef]
- Grant, P.S.; McShane, M.J. Development of multilayer fluorescent thin film chemical sensors using electrostatic self-assembly. IEEE Sens. J. 2003, 3, 139–146. [Google Scholar] [CrossRef]
- Ban, S.; Hosoki, A.; Nishiyama, M.; Seki, A.; Watanabe, K. Optical fiber oxygen sensor using layer-by-layer stacked porous composite membranes. In Proceedings of the SPIE—The International Society for Optical Engineering, San Francisco, CA, USA, 18 April 2016; Volume 9754. [Google Scholar]
- Su, F.; Alam, R.; Mei, Q.; Tian, Y.; Youngbull, C.; Johnson, R.H.; Meldrum, D.R. Nanostructured oxygen sensor—Using micelles to incorporate a hydrophobic platinum porphyrin. PLoS ONE 2012, 7, e33390. [Google Scholar] [CrossRef] [PubMed]
- Elosua, C.; De Acha, N.; Hernaez, M.; Matias, I.R.; Arregui, F.J. Layer-by-Layer assembly of a water-insoluble platinum complex for optical fiber oxygen sensors. Sens. Actuators B Chem. 2015, 207, 683–689. [Google Scholar] [CrossRef]
- Tung, T.T.; Nine, M.J.; Krebsz, M.; Pasinszki, T.; Coghlan, C.J.; Tran, D.N.H.; Losic, D. Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites. Adv. Funct. Mater. 2017, in press. [Google Scholar] [CrossRef]
- Jung, Y.K.; Lee, T.; Shin, E.; Kim, B.-S. Highly tunable aptasensing microarrays with graphene oxide multilayers. Sci. Rep. 2013, 3, 3367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.; Tang, L.; Wang, Y.; Jiang, J.; Li, J. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem. 2010, 82, 2341–2346. [Google Scholar] [CrossRef] [PubMed]
Analyte | Sensitive Indicator | Reference Indicator | Capsule | Detection Range | LOD | Ref. |
---|---|---|---|---|---|---|
K+ | PBFI | - | (PSS/PAH)5 | 0–45 mM | [64] | |
K+ | PBFI | FluoSpheres | (PAH/PSS)4PAH | 0–282 mM | [84] | |
K+ | PBFI | - | 2, 3, and 5 bilayers of {PSS/PDDA} | 0–45 mM | - | [80] |
K+ | PBFI | Europium FluoSpheres | (PAH/PSS)4PAH | 0–120 mM | 1 mM | [85] |
K+ | PBFI | Europium FluoSpheres | (PAH/PSS)4PAH | 0–300 mM | 1.2 mM | [86] |
Na+ | SBFI | - | 2, 3, and 5 bilayers of {PSS/PDDA} | 0–100 mM | - | [54] |
Cu2+, Ag+ | CdSe/ZnSe QDs | NaYF4:Ce,Tb rare-earth nanocrystals | PSS/PAH | 0–35 μM Cu2+ 0–90 μM Ag+ | - | [83] |
Pb2+ | CdSe/CdS QDs | - | chitosan/xylenol orange | 0.05–6 μM | 20 nM | [59] |
Sensitive Indicator | Reference Indicator | Capsule | Detection Range | LOD | Ref. |
---|---|---|---|---|---|
Ru(dpp) | green polystyrene FluoSpheres | {PAH/PSS}3 | 0–1500 mM | - | [85] |
Ru(dpp) | carboxylate-modified nanospheres | (PAH/PSS)3 | ON/OFF probe | - | [74] |
Ru(dpp) | - | (PSS/PAH)4/PSS | 0–0.6 mM | - | [87] |
Ru(bpy) | FITC | (PSS/PAH-FITC)5/PSS | - | [52] | |
Ru(bpy) | FITC | (PSS/PDDA)5/PSS | ON/OFF probe | - | [75] |
[Ru(Ph2phen)3]2+ | carboxylate-modified FluoSpheres | {PAH/PSS}3 | 0–1.5 mM | - | [88] |
PdTCPP | carboxylate-modified FluoSpheres | [PDDA/PSS]10 | 0–250 µM | 7.62 µM | [58] |
Analyte | Sensitive Indicator | Sensing Film | Detection Range | LOD | Cross-Sensitivity | Ref. |
---|---|---|---|---|---|---|
Fe3+, Hg2+ | HPTS | [PAH/PAA-HPTS]n | 0–0.5 mM Fe3+ 0–1 mM Hg2+ | 1.28 ppm Fe3+ 1.79 ppm Hg2+ | - | [100,101] |
Hg2+ | TPPS | (PDDA/PSS/PDDA/TPPS) | 0–3.3 × 10−5 M | <3.3 × 10−8 M | Cd2+, Pb2+, Cu2+ | [102] |
Hg2+ | PPESO3 | (PDDA/PPESO3)3 | 0–1 mM | 10−7 M | Fe3+, Al3+ | [104] |
Fe3+ | PFPNa | (PDAC/PFPNa)1 | 0–10 μM | 10−7 M | - | [103] |
Hg2+ | MSA-capped CdTe QDs | (PDDA/QDs)10 | 0–1 μM | <10−8 M | Cu2+, Ag1+ | [105] |
Cu2+, Hg2+ | MSA-capped CdTe QDs | (PDDA/QDs)5 | 0–1 μM Cu2+ 0–0.5 μM Hg2+ | <10−8 M Cu2+ <5 × 10−9 M Hg2+ | High concentrations of Ni2+, Cr3+, Au3+, Ag+ | [106] |
Hg2+ | MPA-capped CdTe QDs | (PDDA/QDs)5/PDDA/PSS/PDDA/(QDs)5/BSA | 0.01–1 μM | 4.5 × 10−9 M | - | [107] |
Hg2+ | Carbon dots | (PEI/Carbon dots)1-6 | 0.01–2.69 μM for (PEI/Carbon dots)6 | 10−8 M for (PEI/Carbon dots)6 | - | [108] |
Cu2+ | (16-MHA) capped CdSe QDs | Ag NPs/(PDADMAC/PSS)/QDs | 0–100 μM | 5 × 10−9 M | - | [109] |
Stern–Volmer Constants | Mathematical Model | ||||
---|---|---|---|---|---|
f1 | KSV,1 | f2 | KSV,2 | ||
[PDDA/PtSDS]5 | 0.957 | 0.0898 | 0.043 | 0.0001 | |
[PEI/PtSDS]5 | 0.9939 | 0.1526 | 0.0061 | 0.085 | |
[PAH/PtSDS]5 | 1 | 0.34 | 0 | 0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Acha, N.; Elosua, C.; Matias, I.; Arregui, F.J. Luminescence-Based Optical Sensors Fabricated by Means of the Layer-by-Layer Nano-Assembly Technique. Sensors 2017, 17, 2826. https://doi.org/10.3390/s17122826
De Acha N, Elosua C, Matias I, Arregui FJ. Luminescence-Based Optical Sensors Fabricated by Means of the Layer-by-Layer Nano-Assembly Technique. Sensors. 2017; 17(12):2826. https://doi.org/10.3390/s17122826
Chicago/Turabian StyleDe Acha, Nerea, Cesar Elosua, Ignacio Matias, and Francisco Javier Arregui. 2017. "Luminescence-Based Optical Sensors Fabricated by Means of the Layer-by-Layer Nano-Assembly Technique" Sensors 17, no. 12: 2826. https://doi.org/10.3390/s17122826
APA StyleDe Acha, N., Elosua, C., Matias, I., & Arregui, F. J. (2017). Luminescence-Based Optical Sensors Fabricated by Means of the Layer-by-Layer Nano-Assembly Technique. Sensors, 17(12), 2826. https://doi.org/10.3390/s17122826