Novel Noninvasive Brain Disease Detection System Using a Facial Image Sensor
Abstract
:1. Introduction
2. Noninvasive BD Detection System (NBDS)
2.1. NBDS Structure
2.2. Facial Image Sensor
2.3. Key Block Extraction
2.4. Color Feature Extraction
2.5. Classification
3. Experimental Results
3.1. Experimental Setting
3.2. NBDS Performance
3.2.1. BD vs. H
3.2.2. Sub-Classes of BD vs. H
3.3. Classifier Comparison Results
3.4. Running Time of NBDS
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sylwester, R. An Educator’s Guide to the Human Brain; Association for Supervision and Curriculum Development: Alexandria, VA, USA, 1995. [Google Scholar]
- Chua, S.; McKenna, P. Schizophrenia—A brain disease? A critical review of structural and functional cerebral abnormality in the disorder. Br. J. Psychiatry 1995, 166, 563–582. [Google Scholar] [CrossRef] [PubMed]
- Rosvold, H.E.; Mirsky, A.F.; Sarason, I.; Bransome, E.D., Jr.; Beck, L.H. A continuous performance test of brain damage. J. Consult. Psychol. 1956, 20, 343. [Google Scholar] [CrossRef]
- Organization, W.H. Neurological Disorders: Public Health Challenges; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Langlois, J.A.; Rutland-Brown, W.; Wald, M.M. The epidemiology and impact of traumatic brain injury: A brief overview. J. Head Trauma Rehabilit. 2006, 21, 375–378. [Google Scholar] [CrossRef]
- Miles, K.A. Perfusion imaging with computed tomography: Brain and beyond. Eur. Radiol. Suppl. 2006, 16, M37–M43. [Google Scholar] [CrossRef]
- Kwong, K.K.; Belliveau, J.W.; Chesler, D.A.; Goldberg, I.E.; Weisskoff, R.M.; Poncelet, B.P.; Kennedy, D.N.; Hoppel, B.E.; Cohen, M.S.; Turner, R. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 1992, 89, 5675–5679. [Google Scholar] [CrossRef] [PubMed]
- Bandettini, P.A.; Jesmanowicz, A.; Wong, E.C.; Hyde, J.S. Processing strategies for time-course data sets in functional MRI of the human brain. Magn. Reson. Med. 1993, 30, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Bamford, J.; Sandercock, P.; Dennis, M.; Warlow, C.; Burn, J. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 1991, 337, 1521–1526. [Google Scholar] [CrossRef]
- Mosley, I.; Nicol, M.; Donnan, G.; Patrick, I.; Dewey, H. Stroke symptoms and the decision to call for an ambulance. Stroke 2007, 38, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.H.; Lee, S.H.; Cho, D.U.; Oh, S.Y. A proposal of heart diseases diagnosis method using analysis of face color. In Proceedings of the IEEE International Conference on Advanced Language Processing and Web Information Technology (ALPIT’08), Dalian, China, 23–25 July 2008; IEEE: New York, NY, USA, 2008; pp. 220–225. [Google Scholar]
- Zhang, B.; Kumar, B.V.; Zhang, D. Noninvasive diabetes mellitus detection using facial block color with a sparse representation classifier. IEEE Trans. Biomed. Eng. 2014, 61, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Ting, S.; Zhang, B. Diabetes mellitus detection based on facial block texture features using the Gabor filter. In Proceedings of the 2014 IEEE 17th International Conference on Computational Science and Engineering (CSE 2014), Chengdu, China, 19–21 December 2014; IEEE: New York, NY, USA, 2014; pp. 1–6. [Google Scholar]
- Shu, T.; Zhang, B.; Tang, Y.Y. Simplified and improved patch ordering for diabetes mellitus detection. In Proceedings of the 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF), Gdynia, Poland, 24–26 June 2015; IEEE: New York, NY, USA, 2015; pp. 371–376. [Google Scholar]
- Shu, T.; Zhang, B.; Tang, Y. Using K-NN with weights to detect diabetes mellitus based on genetic algorithm feature selection. In Proceedings of the 2016 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), Jeju, Korea, 10–13 July 2016; IEEE: New York, NY, USA, 2016; pp. 12–17. [Google Scholar]
- Shu, T.; Zhang, B. Non-invasive health status detection system using gabor filters based on facial block texture features. J. Med. Syst. 2015, 39, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ťupa, O.; Procházka, A.; Vyšata, O.; Schätz, M.; Mareš, J.; Vališ, M.; Mařík, V. Motion tracking and gait feature estimation for recognising Parkinson’s disease using MS Kinect. Biomed. Eng. Online 2015, 14, 97. [Google Scholar] [CrossRef] [PubMed]
- Procházka, A.; Vyšata, O.; Vališ, M.; Ťupa, O.; Schätz, M.; Mařík, V. Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect. Digit. Signal Process. 2015, 47, 169–177. [Google Scholar] [CrossRef]
- Procházka, A.; Schätz, M.; Vyšata, O.; Vališ, M. Microsoft kinect visual and depth sensors for breathing and heart rate analysis. Sensors 2016, 16, 996. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 210–227. [Google Scholar] [CrossRef] [PubMed]
- Elad, M.; Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 2006, 15, 3736–3745. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.; Wright, J.; Ganesh, A.; Zhou, Z.; Mobahi, H.; Ma, Y. Toward a practical face recognition system: Robust alignment and illumination by sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 372–386. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image super-resolution via sparse representation. IEEE Trans. Image Process. 2010, 19, 2861–2873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, M.; Feng, X. Sparse representation or collaborative representation: Which helps face recognition? In Proceedings of the IEEE 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; IEEE: New York, NY, USA, 2011; pp. 471–478. [Google Scholar]
- Cai, S.; Zhang, L.; Zuo, W.; Feng, X. A probabilistic collaborative representation based approach for pattern recognition. In Proceedings of the IEEE 2016 International Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; IEEE: New York, NY, USA, 2016. [Google Scholar]
- Wyszecki, I.; Stiles, W. Color Science: Concepts and Methods, Quantitative Data, And Formulae; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Wang, X.; Zhang, D. An optimized tongue image color correction scheme. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 1355–1364. [Google Scholar] [CrossRef] [PubMed]
- Youn, S.W.; Park, E.S.; Lee, D.H.; Huh, C.H.; Park, K.C. Does facial sebum excretion really affect the development of acne? Br. J. Dermatol. 2005, 153, 919–924. [Google Scholar] [CrossRef] [PubMed]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 679–698. [Google Scholar] [CrossRef]
- Moyano, M.; Meléndez-Martínez, A.J.; Alba, J.; Heredia, F.J. A comprehensive study on the colour of virgin olive oils and its relationship with their chlorophylls and carotenoids indexes (I): CIEXYZ non-uniform colour space. Food Res. Int. 2008, 41, 505–512. [Google Scholar] [CrossRef]
- Rui-juan, L. Study on Color Space Conversion Model from RGB to CIEXYZ. Packag. Eng. 2009, 3, 029. [Google Scholar]
- Zhang, X.; Wang, Q.; Li, J.; Zhou, X.; Yang, Y.; Xu, H. Estimating spectral reflectance from camera responses based on CIE XYZ tristimulus values under multi-illuminants. Color Res. Appl. 2017, 42, 68–77. [Google Scholar] [CrossRef]
- Smith, T.; Guild, J. The CIE colorimetric standards and their use. Trans. Opt. Soc. 1931, 33, 73. [Google Scholar] [CrossRef]
- Hunter, R.S. Accuracy, precision, and stability of new photoelectric color-difference meter. J. Opt. Soc. Am. 1948, 38, 1094. [Google Scholar]
- Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [Google Scholar] [CrossRef]
- Steinwart, I.; Christmann, A. Support Vector Machines; Springer Science & Business Media: New York, NY, USA, 2008. [Google Scholar]
- Maroco, J.; Silva, D.; Rodrigues, A.; Guerreiro, M.; Santana, I.; de Mendonça, A. Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Res. Notes 2011, 4, 299. [Google Scholar] [CrossRef] [PubMed]
- Alshammari, Q.; Galloway, G.J.; Strudwick, M.W.; Wang, W.; Ng, A.; Hamilton-Craig, C. O179 Early Detection of Hypertensive Myocardial Fibrosis by Cardiac Magnetic Resonance Relaxometry. Glob. Heart 2014, 9, e49. [Google Scholar] [CrossRef]
- Tongdee, R.; Narra, V.; Oliveira, E.; Chapman, W.; Elsayes, K.; Brown, J. Utility of 3D magnetic resonance imaging in preoperative evaluation of hepatobiliary diseases. HPB 2006, 8, 311–317. [Google Scholar] [CrossRef] [PubMed]
BD Kind Name | Corresponding Sample Number |
---|---|
Cerebral Infarction (CI) | 80 |
Other BD (OBD) | 39 |
k-NN | SVM | SRC | CRC | ProCRC | |
---|---|---|---|---|---|
FHB | 80.33% | 82.00% | 74.50% | 80.67% | 82.33% |
LCB | 87.50% | 89.83% | 89.67% | 85.67% | 95.00% |
NBB | 80.67% | 80.17% | 76.67% | 79.67% | 80.00% |
FHB+LCB | 88.67% | 89.50% | 88.83% | 88.83% | 90.17% |
FHB+NBB | 82.00% | 81.67% | 81.50% | 81.83% | 82.00% |
LCB+NBB | 85.83% | 90.67% | 90.17% | 85.17% | 91.50% |
FHB+LCB+NBB | 86.83% | 89.83% | 84.50% | 87.00% | 89.17% |
Round No. | 1 | 2 | 3 | 4 | 5 | Mean |
---|---|---|---|---|---|---|
Error | 0.0083 | 0.0250 | 0.1083 | 0.0583 | 0.0500 | 0.0500 |
k-NN | SVM | SRC | CRC | ProCRC | |
---|---|---|---|---|---|
FHB | 0.1836 | 1.2646 | 4.4256 | 0.006 | 0.0026 |
LCB | 0.0034 | 0.045 | 4.7146 | 0.0038 | 0.0006 |
NBB | 0.0036 | 0.2904 | 4.768 | 0.0026 | 0.0004 |
FHB+LCB | 0.067 | 0.3878 | 4.8236 | 0.003 | 0.0006 |
FHB+NBB | 0.003 | 0.4258 | 4.5844 | 0.0024 | 0.0006 |
LCB+NBB | 0.0032 | 0.3232 | 5.089 | 0.0026 | 0.0004 |
FHB+LCB+NBB | 0.0032 | 0.6282 | 5.2658 | 0.003 | 0.0014 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, T.; Zhang, B.; Tang, Y.Y. Novel Noninvasive Brain Disease Detection System Using a Facial Image Sensor. Sensors 2017, 17, 2843. https://doi.org/10.3390/s17122843
Shu T, Zhang B, Tang YY. Novel Noninvasive Brain Disease Detection System Using a Facial Image Sensor. Sensors. 2017; 17(12):2843. https://doi.org/10.3390/s17122843
Chicago/Turabian StyleShu, Ting, Bob Zhang, and Yuan Yan Tang. 2017. "Novel Noninvasive Brain Disease Detection System Using a Facial Image Sensor" Sensors 17, no. 12: 2843. https://doi.org/10.3390/s17122843
APA StyleShu, T., Zhang, B., & Tang, Y. Y. (2017). Novel Noninvasive Brain Disease Detection System Using a Facial Image Sensor. Sensors, 17(12), 2843. https://doi.org/10.3390/s17122843