Wireless Concrete Strength Monitoring of Wind Turbine Foundations
Abstract
:1. Introduction
2. Theory
2.1. Hydration Reactions
2.2. Maturity Methods
2.2.1. Calculating the Equivalent Age
2.2.2. Nurse-Saul Method
2.2.3. Arrhenius Method
2.2.4. Strength Dependence
3. Field Installation and Analysis
3.1. Field Work
3.1.1. Sensor Installation
3.1.2. Concrete Pour and Coring
3.1.3. Cube Compression Tests
3.2. Analysis
3.2.1. Strength Dependence
3.2.2. Temperature Extrapolation
3.2.3. Contour Mapping
3.2.4. Equivalent Age and Strength Calculations
3.2.5. Artificial Neural Network
4. Results and Discussion
4.1. Cube Result Strength Models
4.2. General Trends in Temperature and Maturity
4.3. Temperature Maps
4.4. Equivalent Age and Strength Maps
4.5. Core Samples
4.6. Artificial Neural Network
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CSH | Calcium Silicate Hydrate |
FEM | Finite Element Model |
OPC | Ordinary Portland Cement |
PFA | Pulverised Fly Ash |
RFID | Radio Frequency Identification |
SHM | Structural Health Monitoring |
References
- EWEA. European Wind Energy Association Wind in Power: 2015 European Statistics; Technical Report; EWEA: Brussels, Belgium, 2016. [Google Scholar]
- GWEC. Global Wind Eneregy Council Global Wind Report: Annual Market Update; Technical Report; GWEC: Brussels, Belgium, 2015. [Google Scholar]
- IREA. International Renewable Energy Agency: Renewable Energy Target Setting; Technical Report; IREA: Abu Dhabi, The United Arab Emirates, 2015. [Google Scholar]
- Staffell, I.; Green, R. How does wind farm performance decline with age? Renew. Energy 2014, 66, 775–786. [Google Scholar] [CrossRef]
- Expedition Engineering. Get It Right Initiative: Research Report Revision 3; Expedition Engineering: London, UK, 2016. [Google Scholar]
- Hassanzadeh, M. Cracks in Onshore Wind Power Foundations: Causes and Consequences, Elforsk Rapport 11:56; Technical Report; Elforsk: Stockholm, Sweden, 2012. [Google Scholar]
- Yang, Y.; Nagarajaiah, S. Structural damage identification via a combination of blind feature extraction and sparse representation classification. Mech. Syst. Signal Process. 2014, 45, 1–23. [Google Scholar] [CrossRef]
- Cho, S.; Spencer, B.F.; Jo, H.; Li, J.; Kim, R.E. Bridge Monitoring Using Wireless Smart Sensors. Available online: http://spie.org/newsroom/4043-bridge-monitoring-using-wireless-smart-sensors (accessed on 16 Decemeber 2017).
- Ni, Y.Q.; Xia, Y.; Liao, W.Y.; Ko, J.M. Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower. Struct. Control Health Monit. 2009, 16, 73–98. [Google Scholar] [CrossRef]
- Perry, M.; McAlorum, J.; Fusiek, G.; Niewczas, P.; McKeeman, I.; Rubert, T. Crack monitoring of operational wind turbine foundations. Sensors 2017, 17, 1925. [Google Scholar] [CrossRef] [PubMed]
- Currie, M.; Saafi, M.; Tachtatzis, C.; Quail, F. Structural integrity monitoring of onshore wind turbine concrete foundations. Renew. Energy 2015, 83, 1131–1138. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.N.; Lei, Y.; Lin, S.; Huang, N. Hilbert-Huang based approach for structural damage detection. J. Eng. Mech. 2004, 130, 85–95. [Google Scholar] [CrossRef]
- Zang, C.; Friswell, M.I.; Imregun, M. Structural damage detection using independent component analysis. Struct. Health Monit. 2004, 3, 69–83. [Google Scholar] [CrossRef]
- Vanik, M.; Beck, J.; Au, S. Bayesian probabilistic approach to structural health monitoring. J. Eng. Mech. 2000, 126, 738–745. [Google Scholar] [CrossRef]
- Bernardo, J.; Smith, A. Bayesian Theory, 1st ed.; Wiley: Chichester, UK, 2000. [Google Scholar]
- American Concrete Institute. Building Code Requirements for Structural Concrete (ACI 318), ACI Committee 318; Technical Report ACI 318; ACI: Farmington Hills, MI, USA, 2005. [Google Scholar]
- Baghabra Al-Amoudi, O.S.; Al-Kutti, W.A.; Ahmad, S.; Maslehuddin, M. Correlation between compressive strength and certain durability indices of plain and blended cement concretes. Cem. Concr. Compos. 2009, 31, 672–676. [Google Scholar] [CrossRef]
- Azenha, M.; Faria, R. Temperatures and stresses due to cement hydration on the R/C foundation of a wind tower—A case study. Eng. Struct. 2008, 30, 2392–2400. [Google Scholar] [CrossRef]
- Azenha, M.; Faria, R.; Ferreira, D. Identification of early-age concrete temperatures and strains: Monitoring and numerical simulation. Cem. Concr. Compos. 2009, 31, 369–378. [Google Scholar] [CrossRef]
- Azenha, M.; Sousa, C.; Faria, R.; Neves, A. Thermo-hygro-mechanical modelling of self-induced stresses during the service life of RC structures. Eng. Struct. 2011, 33, 3442–3453. [Google Scholar] [CrossRef]
- Conceicao, J.; Faria, R.; Azenha, M.; Mamede, F.; Souza, F. Early-age behaviour of the concrete surrounding a turbine spiral case: Monitoring and thermo-mechanical modelling. Eng. Struct. 2014, 81, 327–340. [Google Scholar] [CrossRef]
- Abu-Obeidah, A.; Nassif, H.; Na, C.; Laird, J.; Johnsen, S. Application of the maturity method in predicting concrete strength in early age (within 24 hours). In Proceedings of the Transportation Research Board 95th Annual Meeting, Washington, DC, USA, 10–14 January 2016. [Google Scholar]
- Cai, D. Application of fiber optical sensing technology to the three gorges project. In Proceedings of the 4th International Conference on Dam Engineering, Nanjing, China, 18–20 October 2014. [Google Scholar]
- Li, Q.; Guan, J.; Wu, Z.; Dong, W.; Zhou, S. Equivalent maturity for ambient temperature effect on fracture parameters of site-casting dam concrete. Constr. Build. Mater. 2016, 120, 293–308. [Google Scholar] [CrossRef]
- Lee, H.S.; Cho, M.W.; Yang, H.M.; Lee, S.B.; Park, W.J. Curing management of early-age concrete at construction site using integrated wireless sensors. ACT 2014, 12, 91–100. [Google Scholar] [CrossRef]
- Ceylan, H.; Yavas, S.; Dong, L.; Jiao, Y.; Yang, S.; Kim, S.; Gopalakrishnan, K.; Taylor, P. Development of a Wireless MEMS Multifunction Sensor System and Field Demonstration of Embedded Sensors for Monitoring Concrete Pavements, Volume I; Iowa State University: Ames, IA, USA, 2016. [Google Scholar]
- Ranz, J.; Aparicio, S.; Fuente, J.V.; Anaya, J.J.; Hernández, M.G. Monitoring of the curing process in precast concrete slabs: An experimental study. Constr. Build. Mater. 2016, 122, 406–416. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, F.; He, Y.; Li, B.; Liang, Z.; Zhou, S. Novel concrete temperature monitoring method based on an embedded passive RFID sensor tag. Sensors 2017, 17, 1463. [Google Scholar] [CrossRef] [PubMed]
- Han, S.H.; Kim, J.K.; Park, Y.D. Prediction of compressive strength of fly ash concrete by new apparent activation energy function. Cem. Concr. Res. 2003, 33, 965–971. [Google Scholar] [CrossRef]
- Tim, T.C.; Ueda, T.; Mueller, H.S.; Fujiyama, C.; Yonetsu, K.; Maeshima, T.; Koda, Y. Identifiable stress state of wind turbine tower-foundation system based on field measurement and FE analysis. Procedia Eng. 2014, 95, 279–289. [Google Scholar]
- Krohn, S. The Economics of Wind Energy; European Wind Energy Association: Brussels, Belgium, 2009. [Google Scholar]
- Porter, J.H.; Hanson, P.C.; Lin, C.C. Staying afloat in the sensor data deluge. Trends Ecol. Evol. 2012, 27, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Voigt, T.; Grosse, C.U.; Sun, Z.; Shah, S.P.; Reinhardt, H.W. Comparison of ultrasonic wave transmission and reflection measurements with P- and S-waves on early age mortar and concrete. Mater. Struct. 2005, 38, 729–738. [Google Scholar] [CrossRef]
- Gu, H.; Song, G.; Dhonde, H.; Mo, Y.L.; Yan, S. Concrete early-age strength monitoring using embedded piezoelectric transducers. Smart Mater. Struct. 2006, 15, 1837–1845. [Google Scholar] [CrossRef]
- Song, G.; Gu, H.; Mo, Y.L. Smart aggregates: Multi-functional sensors for concrete structures—A tutorial and a review. Smart Mater. Struct. 2008, 17, 033001. [Google Scholar] [CrossRef]
- Verma, S.; Madhav, A.V.G.; Duggal, G. Structural health monitoring of concrete structures using electromechanical impedance technique. In Proceedings of the 2013 International Conference on Advances in Technology and Engineering (ICATE), Mumbai, India, 23–25 January 2013; pp. 1–6. [Google Scholar]
- Rao, S.M.; Asha, K. Activation of fly ash. Lime reactions: Kinetic approach. J. Mater. Civ. Eng. 2012, 24, 1110–1117. [Google Scholar] [CrossRef]
- Day, K.; Aldred, J.; Hudson, B. Concrete Mix Design, Quality Control and Specification, Fourth Edition; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Carino, N. Handbook on Nondestructive Testing of Concrete, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Kwon, S.H.; Jang, K.P.; Bang, J.W.; Lee, J.H.; Kim, Y.Y. Prediction of concrete compressive strength considering humidity and temperature in the construction of nuclear power plants. Nucl. Eng. Des. 2014, 275, 23–29. [Google Scholar] [CrossRef]
- Jonasson, J. Early strength growth in concrete–preliminary test results concerning hardening at elevated temperatures. In Proceedings of the 3rd International RILEM Symposium on Winter Concreting, Espoo, Finland, 25–27 November 1985; pp. 249–254. [Google Scholar]
- Wade, S. Evaluation of the Maturity Method to Estimate Concrete Strength; ALDOT Research Project 930–590: Montgomery, AL, USA, 2006. [Google Scholar]
- Jung, J.S.; Cho, Y.H. Comparison between nurse-saul and arrhenius equations. Can. J. Civ. Eng. 2009, 36, 514–518. [Google Scholar] [CrossRef]
- Freiesleben, H.; Pederson, J. Maturity computer for controlled curing and hardening of concrete. Nord Betong 1977, 1, 19–34. [Google Scholar]
- Kim, J.K.; Han, S.H.; Lee, K.M. Estimation of compressive strength by a new apparent activation energy function. Cem. Concr. Res. 2001, 31, 217–225. [Google Scholar] [CrossRef]
- Carino, N. The maturity method: Theory and application. Cem. Concr. Aggreg. 1984, 6, 61–73. [Google Scholar]
- Elsageer, M.; Millard, S.; Barnett, S. Strength development of concrete containing coal fly ash under different curing temperature conditions. In Proceedings of the World of Coal Ash Conference, Lexington, KY, USA, 4–7 May 2009. [Google Scholar]
- Neville, A.M. Properties of Concrete PDF eBook; Prentice Hall: Upper Saddle River, NJ, USA, 2012. [Google Scholar]
- Eppelbaum, L.; Kutasov, L.; Pilchin, A. Applied Geothermics; Springer: Berlin, Germany, 2014. [Google Scholar]
- Bishop, C.M. Neural Networks for Pattern Recognition, 1st ed.; Clarendon Press: Oxford, UK; New York, NY, USA, 1996. [Google Scholar]
- Zhou, S.; Deng, F.; Yu, L.; Li, B.; Wu, X.; Yin, B. A novel passive wireless sensor for concrete humidity monitoring. Sensors 2016, 16, 1535. [Google Scholar] [CrossRef] [PubMed]
Dry Components | kg/m3 |
---|---|
Cement: CEM II-BV, 70/30 PFA blend | 400 |
Coarse aggregate 20–50 mm | 1006 |
Fine aggregate (sand) | 800 |
Free water | 180 |
Superplasticiser | 2 |
Set-retarding admixture | 0.7 |
Type | Notation (see Figure 5a) | Extrapolation | A | B | R2 |
---|---|---|---|---|---|
Wireless | W1 | AtB | 50 | −0.48 | 0.852 |
W2 | AtB | 143 | −0.66 | 0.998 | |
Operator | O1 | Aexp(Bt) | 86 | −0.037 | 0.974 |
O2 | Aexp(Bt) | 64 | −0.054 | 0.964 | |
O3 | AtB | 105 | −0.70 | 0.998 | |
O4 | AtB | 111 | −0.67 | 0.995 | |
O5 (Ambient) | Temperature records from local weather data |
Parameter | Value | Units | Notes |
---|---|---|---|
Ambient temperature | 293 | K | Used for radiation and convective heat loss |
Convective heat transfer coefficient | 10 | W/m2K | Assumed for natural convection |
Emissivity of concrete | 0.85 | Used to calcualte radiation heat loss | |
Max heat power generation in concrete | 10 | kW/m3 | Assumed to be uniform. Based on 4 mW/g max rate of hydration [48] |
Concrete and bedrock density | 2400 | kg/m3 | As outlined in [48,49] |
Concrete and bedrock thermal conductivity | 1.8 | W/mK | |
Concrete and bedrock heat capacity | 880 | J/kgK |
Carino (1984) | Kim et al., 2001 | ||||
---|---|---|---|---|---|
Su (MPa) | k (days) | Su (MPa) | E (kJ/mol) | ||
C35/45 | 56 | 0.28 | 63 | 6 × 10 | 42.5 |
C45/55 | 69 | 0.24 | 67 | 8 × 10 | 43.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perry, M.; Fusiek, G.; Niewczas, P.; Rubert, T.; McAlorum, J. Wireless Concrete Strength Monitoring of Wind Turbine Foundations. Sensors 2017, 17, 2928. https://doi.org/10.3390/s17122928
Perry M, Fusiek G, Niewczas P, Rubert T, McAlorum J. Wireless Concrete Strength Monitoring of Wind Turbine Foundations. Sensors. 2017; 17(12):2928. https://doi.org/10.3390/s17122928
Chicago/Turabian StylePerry, Marcus, Grzegorz Fusiek, Pawel Niewczas, Tim Rubert, and Jack McAlorum. 2017. "Wireless Concrete Strength Monitoring of Wind Turbine Foundations" Sensors 17, no. 12: 2928. https://doi.org/10.3390/s17122928
APA StylePerry, M., Fusiek, G., Niewczas, P., Rubert, T., & McAlorum, J. (2017). Wireless Concrete Strength Monitoring of Wind Turbine Foundations. Sensors, 17(12), 2928. https://doi.org/10.3390/s17122928