Volatile Organic Compounds Sensing Using Optical Fibre Long Period Grating with Mesoporous Nano-Scale Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sensor Fabrication
2.3. Thin Film Deposition
2.4. Volatile Organic Compounds Measurement
2.5. Materials Leakage Test
3. Results
3.1. Deposition of the Sensitive Film
3.2. VOCs Measurement
3.3. Material Leakage
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Leech, J.A.; Nelson, W.C.; Burnett, R.T.; Aaron, S.; Raizenne, M.E. It is about time: A comparison of Canadian and American time-activity patterns. J. Expo Anal. Environ. Epidemiol. 2002, 12, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Crump, D. A review of the emission of VOCs from polymeric materials used in buildings. Build. Environ. 1998, 33, 357–374. [Google Scholar] [CrossRef]
- Harrison, P.; Humfrey, C.; Shuker, L. IEH assessment on Indoor Air Quality in the Home _2_Carbon Monoxide. In IEH Assessment on Indoor Air Quality in the Home; Institute for Environment and Health: Leicester, UK, 1996. [Google Scholar]
- Penney, D.; Benignus, V.; Kephalopoulos, S.; Kotzias, D.; Kleinman, M. WHO Guidelines for Agnes Verrier. Guidelines for Indoor Air Quality; WHO: Geneva, Switerland, 2010. [Google Scholar]
- Occupational Safety and Health Administration. Toxic and Hazardous Substances: Limits for Air Contaminants. Available online: https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=standards&p_id=9992 (accessed on 8 November 2016).
- Health and Safety Executive. EH4O/2005 Workplace Exposure Limits EH4O/2005 Workplace Exposure Limits; Health and Safety Executive: London, UK, 2011; pp. 1–74.
- Mølhave, L. Indoor climate, air pollution, and human comfort. J. Expo Anal. Environ. Epidemiol. 1991, 1, 63–81. [Google Scholar] [PubMed]
- Marć, M.; Zabiegała, B.; Namieśnik, J. Testing and sampling devices for monitoring volatile and semi-volatile organic compounds in indoor air. Trends Anal Chem. 2012, 32, 76–86. [Google Scholar] [CrossRef]
- Zabiegała, B.; Górecki, T.; Przyk, E.; Namieśnik, J. Permeation passive sampling as a tool for the evaluation of indoor air quality. Atmos. Environ. 2002, 36, 2907–2916. [Google Scholar] [CrossRef]
- Federal-Provincial Advisory Committe on Environmental and Occupational Health. Indoor Air Quality in Office Buildings: A Technical Guide; Federal-Provincial Advisory Committee on Environmental and Occupational Health: Ottawa, ON, Canada, 1995; pp. 1–57. [Google Scholar]
- Pekey, H.; Arslanbas, D. The relationship between indoor, outdoor, and personal VOC concentrations in homes, offices and schools, in the metropolitan region of Kocaeli, Turkey. Water Air Soil Pollut. 2008, 191, 113–129. [Google Scholar] [CrossRef]
- Kersey, A.D. A Review of recent developments in fiber optic sensor technology. Opt. Fiber Technol. 1996, 2, 291–317. [Google Scholar] [CrossRef]
- Wang, X.D.; Wolfbeis, O.S. Fiber-optic chemical sensors and biosensors (2013–2015). Anal. Chem. 2016, 88, 203–227. [Google Scholar] [CrossRef] [PubMed]
- Korposh, S.; James, S.; Tatam, R.; Lee, S. Fibre-optic chemical sensor approaches based on nanoassembled thin films: A challenge to future sensor technology. Curr. Dev. Opt. Fiber Technol. 2013, 585. [Google Scholar] [CrossRef]
- Korposh, S.; Selyanchyn, R.; Yasukochi, W.; Lee, S.W.; James, S.W.; Tatam, R.P. Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water. Mater. Chem. Phys. 2012, 133, 784–792. [Google Scholar] [CrossRef]
- Korposh, S.; Wang, T.; James, S.; Tatam, R.; Lee, S.-W. Pronounced aromatic carboxylic acid detection using a layer-by-layer mesoporous coating on optical fibre long period grating. Sens. Actuators B Chem. 2012, 173, 300–309. [Google Scholar] [CrossRef]
- Korposh, S.; Selyanchyn, R.; James, S.; Tatam, R.; Lee, S.W. Identification and quality assessment of beverages using a long period grating fibre-optic sensor modified with a mesoporous thin film. Sens. Bio-Sens. Res. 2014, 1, 26–33. [Google Scholar] [CrossRef]
- Hromadka, J.; Tokay, B.; James, S.; Tatam, R.P.; Korposh, S. Optical fibre long period grating gas sensor modified with metal organic framework thin films. Sens. Actuators B Chem. 2015, 221, 891–899. [Google Scholar] [CrossRef]
- Marques, L.; Hernandez, F.U.; James, S.W.; Morgan, S.P.; Clark, M.; Tatam, R.P.; Korposh, S. Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles. Biosens. Bioelectron. 2016, 75, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Urrutia, A.; Goicoechea, J.; Ricchiuti, A.L.; Barrera, D.; Sales, S.; Arregui, F.J. Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating. Sens. Actuators B Chem. 2016, 227, 135–141. [Google Scholar] [CrossRef]
- Cusano, A.; Pilla, P.; Contessa, L.; Iadicicco, A.; Campopiano, S.; Cutolo, A.; Giordano, M.; Guerra, G. High-sensitivity optical chemosensor based on coated long-period gratings for sub-ppm chemical detection in water. Appl. Phys. Lett. 2005, 87, 1–3. [Google Scholar] [CrossRef]
- Chiavaioli, F.; Biswas, P.; Trono, C.; Bandyopadhyay, S.; Giannetti, A.; Tombelli, S.; Basumallick, N.; Dasgupta, K.; Baldini, F. Towards sensitive label-free immunosensing by means of turn-around point long period fiber gratings. Biosens. Bioelectron. 2014, 60, 305–310. [Google Scholar] [CrossRef] [PubMed]
- James, S.W.; Tatam, R.P. Optical fibre long-period grating sensors: Characteristics and application. Meas. Sci. Technol. 2003, 14, R49–R61. [Google Scholar] [CrossRef]
- Arregui, F.J.; Matias, I.R.; Corres, J.M.; Del Villar, I.; Goicoechea, J.; Zamarreño, C.R.; Hernáez, M.; Claus, R.O. Optical fiber sensors based on Layer-by-Layer nanostructured films. Procedia Eng. 2010, 5, 1087–1090. [Google Scholar] [CrossRef]
- Korposh, S.; Lee, S.-W.; James, S.W.; Tatam, R.P. Refractive index sensitivity of fibre optic long period gratings with SiO2 nanoparticle based mesoporous coatings. Meas. Sci. Technol. 2011, 22, 19–22. [Google Scholar] [CrossRef]
- Cheung, C.S.; Topliss, S.M.; James, S.W.; Tatam, R.P. Response of fibre optic long period gratings operating near the phase matching turning point to the deposition of nanostructured coatings. J. Opt. Soc. Am. B 2008, 25, 897–902. [Google Scholar] [CrossRef]
- Wang, T.; Yasukochi, W.; Korposh, S.; James, S.W.; Tatam, R.P.; Lee, S.-W. A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas. Sens. Actuators B Chem. 2016, 228, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Hromadka, J.; James, S.; Davis, F.; Tatam, R.P.; Crump, D.; Korposh, S. Detection of the volatile organic compounds emitted from paints using optical fibre long period grating modified with the mesoporous nano-scale coating. In Proceedings of the 24th International Conference on Optical Fibre Sensors, Curitiba, Brazil, 28 September–2 October 2015; Volume 9634, pp. 5–8.
- Korposh, S.; Davis, F.; James, S.W.; Wang, T.; Lee, S.-W.; Higson, S.; Tatam, R.P. Detection of volatile organic compounds (VOCs) using an optical fibre long period grating with a calixarene anchored mesoporous thin film. In Proceedings of the Fifth European Workshop on Optical Fibre Sensors, Krakow, Poland, 19–20 May 2013.
- Topliss, S.M.; James, S.W.; Davis, F.; Higson, S.P.J.; Tatam, R.P. Optical fibre long period grating based selective vapour sensing of volatile organic compounds. Sens. Actuators B Chem. 2010, 143, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Sozzi, M.; Cucinotta, A.; Corradini, R.; Marchelli, R.; Konstantaki, M.; Pissadakis, S.; Selleri, S. Label-free DNA detection with PNA Modified Long Period Fiber Grating-Based Sensor. In Proceedings of the 12th European Quantum Electronics Conference on Lasers and Electro-Optics Europe, Munich, Germany, 22–26 May 2011.
- Venugopalan, T.; Sun, T.; Grattan, K.T.V. Long period grating-based humidity sensor for potential structural health monitoring. Sens. Actuators A Phys. 2008, 148, 280–295. [Google Scholar] [CrossRef]
- Ishaq, I.M.; Quintela, A.; James, S.W.; Ashwell, G.J.; Lopez-Higuera, J.M.; Tatam, R.P. Modification of the refractive index response of long period gratings using thin film overlays. Sens. Actuators B Chem. 2005, 107, 738–741. [Google Scholar] [CrossRef] [Green Version]
- Korposh, S.; Kodaira, S.; Lee, S.W.; Batty, W.J.; James, S.W.; Tatam, R.P. Deposition of SiO2/Polymer Nanoporous thin films on long-period grating (LPG) optical fibres and dramatic Enhancement of the resonance bands. In Proceedings of the 3rd International Conference Sensing Technology (ICST), Taipei, Taiwan, 30 November–3 December 2008.
- Zhang, J.; Tang, X.; Dong, J.; Wei, T.; Xiao, H. Zeolite thin film-coated long period fiber grating sensor for measuring trace organic vapors. Sens. Actuators B Chem. 2009, 135, 420–425. [Google Scholar] [CrossRef]
- Barnes, J.; Dreher, M.; Plett, K.; Brown, R.S.; Crudden, C.M.; Loock, H.-P. Chemical sensor based on a long-period fibre grating modified by a functionalized polydimethylsiloxane coating. Analyst 2008, 133, 1541–1549. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.K.; Nabok, A.V.; Ray, A.K.; Lucke, A.; Smith, K.; Stirling, C.J.M.; Davis, F. Thin Films of calix-4-Resorcinarene Deposited by Spin Coating and Langmuir-Blodgett Techniques: Determination of Film Parameters by Surface Plasmon Resonance. Mater. Eng. Res. Inst. 1999, 8/9, 251–255. [Google Scholar] [CrossRef]
- Çapan, R.; Özbek, Z.; Göktaş, H.; Şen, S.; Önce, F.G.; Özel, M.E.; Stanciu, G.A.; Davis, F. Characterization of Langmuir-Blodgett films of a calix[8]arene and sensing properties towards volatile organic vapors. Sens. Actuators B Chem. 2010, 148, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Partridge, M.; Wong, R.; James, S.W.; Davis, F.; Higson, S.P.J.; Tatam, R.P. Long period grating based toluene sensor for use with water contamination. Sens. Actuators B Chem. 2014, 203, 621–625. [Google Scholar] [CrossRef] [Green Version]
- Davis, F.; Toole, L.O.; Short, R.; Stirling, C.J.M. Selective ion binding by Langmuir—Blodgett films of calix[8]arenes. Langmuir 1996, 12, 1892–1894. [Google Scholar] [CrossRef]
- Ye, C.C.; James, S.W.; Tatam, R.P. Simultaneous temperature and bend sensing with long-period fiber gratings. Opt. Lett. 2000, 25, 1007–1009. [Google Scholar] [CrossRef] [PubMed]
- Korposh, S.; James, S.W.; Lee, S.-W.; Topliss, S.; Cheung, S.C.; Batty, W.J.; Tatam, R.P. Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO2 nanoparticles. Opt. Express 2010, 18, 13227–13238. [Google Scholar] [CrossRef] [PubMed]
- Partridge, M.; James, S.W.; Barrington, J.H.; Tatam, R.P. Overwrite fabrication and tuning of long period gratings. Opt Express. 2016, 24, 1449–1451. [Google Scholar] [CrossRef] [PubMed]
- Selyanchyn, R.; Korposh, S.; Matsui, T.; Matsui, H.; Lee, S.-W. Purge and trap sampling coupled to curie point thermal desorption for the detection of parts per trillion 2,4,6-Trichloroanisole in water. Chromatographia 2010, 71, 317–321. [Google Scholar] [CrossRef]
- International Organization for Standardisation. Indoor Air—Part 6: Determination of Volatile Organic Compounds in Indoor and Test Chamber Air by Active Sampling on Tenax TA Sorbent, Thermal Desorption and Gas Chromatography Using MS or MS-FID. 2011. Available online: http://www.iso.org/iso/catalogue_detail.htm?csnumber=52213 (accessed on 19 January 2017).
- Patrick, H.J.; Kersey, A.D.; Bucholtz, F. Analysis of the response of long period fiber gratings to external index of refraction. J. Light Technol. 1998, 16, 1606–1612. [Google Scholar] [CrossRef]
- Del Villar, I.; Corres, J.M.; Achaerandio, M.; Arregui, F.J.; Matias, I.R. Spectral evolution with incremental nanocoating of long period fiber gratings. Opt. Express 2006, 14, 11972–11981. [Google Scholar] [CrossRef] [PubMed]
- Hromadka, J.; Partridge, M.C.; James, S.W.; Davis, F.; Crump, D.; Korposh, S.; Tatam, R. Multi-parameter measurements using optical fibre long period gratings for indoor air quality monitoring. Sens. Actuators B Chem. 2017, 244, 217–225. [Google Scholar] [CrossRef]
VOC | Acetone | Benzene | Chloroform | Toluene |
---|---|---|---|---|
Volume (µL) | Concentration (ppm) | |||
10 | 26,012 | 19,806 | 23,679 | 17,978 |
30 | 78,038 | 59,420 | 71,037 | n/a |
50 | 130,064 | 99,034 | 118,396 | n/a |
100 | 260,128 | n/a | n/a | n/a |
Slope of the Calibration Curve [nm/ppm] | ||
---|---|---|
Type of Calixarene | CA[4] | CA[8] |
VOC | Δ CW019 Difference | |
Acetone | 5.9 × 10−5 | 1.0 × 10−5 |
benzene | 4.3 × 10−5 | 1.8 × 10−5 |
chloroform | 3.0 × 10−5 | 0.7 × 10−5 |
Toluene | 4.7 × 10−5 | 2.0 × 10−5 |
Paint | CA[8] Spray | CA[4] Spray | CA[4] Can |
---|---|---|---|
Time/min | Δ CW019 Difference (nm) | ||
0 | 0 | 0 | 0 |
5 | 0.96 | 3.57 | 0.60 |
30 | 3.25 | 4.53 | 2.62 |
120 | 3.13 | 4.03 | 2.63 |
final | 0.35 | 0.12 | 0.13 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hromadka, J.; Korposh, S.; Partridge, M.; James, S.W.; Davis, F.; Crump, D.; Tatam, R.P. Volatile Organic Compounds Sensing Using Optical Fibre Long Period Grating with Mesoporous Nano-Scale Coating. Sensors 2017, 17, 205. https://doi.org/10.3390/s17020205
Hromadka J, Korposh S, Partridge M, James SW, Davis F, Crump D, Tatam RP. Volatile Organic Compounds Sensing Using Optical Fibre Long Period Grating with Mesoporous Nano-Scale Coating. Sensors. 2017; 17(2):205. https://doi.org/10.3390/s17020205
Chicago/Turabian StyleHromadka, Jiri, Sergiy Korposh, Matthew Partridge, Stephen W. James, Frank Davis, Derrick Crump, and Ralph P. Tatam. 2017. "Volatile Organic Compounds Sensing Using Optical Fibre Long Period Grating with Mesoporous Nano-Scale Coating" Sensors 17, no. 2: 205. https://doi.org/10.3390/s17020205
APA StyleHromadka, J., Korposh, S., Partridge, M., James, S. W., Davis, F., Crump, D., & Tatam, R. P. (2017). Volatile Organic Compounds Sensing Using Optical Fibre Long Period Grating with Mesoporous Nano-Scale Coating. Sensors, 17(2), 205. https://doi.org/10.3390/s17020205