Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gao, Y.H.; Bando, Y. Carbon nanothermometer containing gallium-Gallium’s macroscopic properties are retained on a miniature scale in this nanodevice. Nature 2002, 415, 599. [Google Scholar] [CrossRef] [PubMed]
- Bartolomeo, A.D.; Sarno, M.; Giubileo, F.; Altavilla, C.; Iemmo, L.; Piano, S.; Bobba, F.; Longobardi, M.; Scarfato, A.; Sannino, D.; Cucolo, A.M.; Ciambelli, P. Multiwalled carbon nanotube films as small-sized temperature sensors. J. Appl. Phys. 2009, 105, 064518. [Google Scholar] [CrossRef]
- Karimov, K.S.; Chani, M.T.S.; Khalid, F.A. Carbon nanotubes film based temperature sensors. Phys. E 2011, 43, 1701–1703. [Google Scholar] [CrossRef]
- Karimov, K.S.; Khalid, F.; Chani, M.; Mateen, A.; Hussain, M.A.; Maqbool, A.; Ahn, J. Carbon nanotubes based flexible temperature sensors. Optoelectron. Adv. Mater.-Rapid Commun. 2012, 6, 194–196. [Google Scholar]
- Matzeu, G.; Pucci, A.; Savi, S.; Romanelli, M.; Di Francesco, F. A temperature sensor based on a MWCNT/SEBS nanocomposite. Sens. Actuators A 2012, 178, 94–99. [Google Scholar] [CrossRef]
- Walters, D.A.; Ericson, L.M.; Casavant, M.J.; Liu, J.; Colbert, D.T.; Smith, K.A.; Smalley, R.E. Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 1999, 74, 3803. [Google Scholar] [CrossRef]
- Li, W.Z.; Wen, J.G.; Ren, Z.F. Straight carbon nanotube Y junctions. Appl. Phys. Lett. 2001, 79, 1879–1881. [Google Scholar] [CrossRef]
- Cadek, M.; Coleman, J.N.; Barron, V.; Hedicke, K.; Blau, W.J. Erratum: “Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites”. Appl. Phys. Lett. 2002, 81, 1223–1227. [Google Scholar] [CrossRef]
- Modi, A.; Koratkar, N.; Lass, E.; Wei, B.Q.; Ajayan, P. M. Miniaturized gas ionization sensors using carbon nanotubes. Nature 2003, 424, 6945. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, J.; Li, X.; Tang, X.J.; Zhu, C.C. Study of improving identification accuracy of carbon nanotube film cathode gas sensor. Sens. Actuators A 2005, 125, 15–24. [Google Scholar]
- Zhang, Y.; Liu, J.; Li, X.; Zhu, C.C. The structure optimization of the carbon nanotube film cathode in the application of gas sensor. Sens. Actuators A 2006, 128, 278–289. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.T.; Zhang, J.Y.; Pan, Z.G.; Min, D.M.; Li, X.; Song, X.P.; Liu, J.H. High-performance gas sensors with temperature measurement. SCI REP-UK 2013, 3, 1267. [Google Scholar] [CrossRef] [PubMed]
- Passacantando, M.; Bussolotti, F.; Santucci, S.; Bartolomeo, A.D.; Giubileo, F.; Iemmo, L.; Cucolo, A.M. Field emission from a selected multiwall carbon nanotube. Nanotechnology 2008, 19, 395701. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, J.H.; Dou, J.Y.; Liu, W.H.; Zhu, C.C. Improvement of purity and field emission character of carbon nanotubes film by optimizing the density of thecatalyst solution. Chin. J. Xi’an Jiaotong Univ. 2002, 36, 1041–1044. [Google Scholar]
- Zhang, J.; Zhang, Y.; Pan, Z.G.; Yang, S.; Shi, J.H.; Li, S.T.; Min, D.M.; Li, X.; Wang, X.H.; Liu, D.X.; Yang, A.J. Properties of a weakly ionized NO gas sensor based on multi-walled carbon nanotubes. Appl. Phys. Lett. 2015, 107, 2004. [Google Scholar] [CrossRef]
- Kasap, S.O. Principles of Electronic Materials and Devices; McGrawHill: Boston, MA, USA, 2002. [Google Scholar]
- Bartolomeo, A.D.; Scarfato, A.; Giubileo, F.; Bobba, F.; Biasiucci, M.; Cucolo, A.M.; Santucci, S.; Passacantando, M. A local field emission study of partially aligned carbon-nanotubes by atomic force microscope probe. Carbon 2007, 45, 2957–2971. [Google Scholar] [CrossRef]
- Raizer, Y.P.; Allen, J.E. Gas Discharge Physics; Springer: Berlin, Germany, 1991. [Google Scholar]
- Ahmed, S.F.; Das, S.; Mitra, M.K.; Chattopadhyay, K.K. Effect of temperature on the electron field emission from aligned carbon nanofibers and multiwalled carbon nanotubes. Appl. Surf. Sci. 2007, 254, 610–615. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Z.; Zhang, Y.; Cheng, Z.; Tong, J.; Chen, Q.; Zhang, J.; Zhang, J.; Li, X.; Li, Y. Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission. Sensors 2017, 17, 473. https://doi.org/10.3390/s17030473
Pan Z, Zhang Y, Cheng Z, Tong J, Chen Q, Zhang J, Zhang J, Li X, Li Y. Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission. Sensors. 2017; 17(3):473. https://doi.org/10.3390/s17030473
Chicago/Turabian StylePan, Zhigang, Yong Zhang, Zhenzhen Cheng, Jiaming Tong, Qiyu Chen, Jianpeng Zhang, Jiaxiang Zhang, Xin Li, and Yunjia Li. 2017. "Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission" Sensors 17, no. 3: 473. https://doi.org/10.3390/s17030473
APA StylePan, Z., Zhang, Y., Cheng, Z., Tong, J., Chen, Q., Zhang, J., Zhang, J., Li, X., & Li, Y. (2017). Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission. Sensors, 17(3), 473. https://doi.org/10.3390/s17030473